Skip to main content
Log in

Bacillus pumilus Ribonuclease Inhibits Migration of Human Duodenum Adenocarcinoma HuTu 80 Cells

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Migration of cancer cells from the primary tumor site to nearby tissues is the starting point of the metastatic process. The invasive properties of cells are especially important for carcinomas, since tumor cells need to overcome the basement membrane and go beyond its boundaries to the underlying tissues. Substances that reduce the invasive ability of malignant cells are promising as antimetastatic agents. In the present work, the possibility of inhibiting the ability of different cancer cell lines to migrate under the influence of the Bacillus pumilus ribonuclease (binase) was analyzed using the scratch-wound assay. It was established that binase at non-toxic concentrations (10 µg/mL) reliably suppressed the migratory ability of HuTu 80 human duodenum adenocarcinoma cells incubated with RNase for 48‒72 h. The antimetastatic potential of binase is confirmed by molecular modeling data demonstrating the ability of binase to inhibit cellular metalloproteinases that determine the migration of tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Newman D.J., Cragg G.M. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75, 311–335.

    Article  CAS  Google Scholar 

  2. Tsang N.Y., Chik W.I., Sze L.P., Wang M.Z., Tsang S.W., Zhang H.J. 2018. The use of naphthoquinones and furano-naphthoquinones as antiinvasive agents. Curr. Med. Chem. 25, 5007‒5056.

    Article  CAS  Google Scholar 

  3. Onoda T., Ono T., Dhar D.K., Yamanoi A., Fujii T., Nagasue N. 2004. Doxycycline inhibits cell proliferation and invasive potential: Combination therapy with cyclooxygenase-2 inhibitor in human colorectal cancer cells. J. Lab. Clin. Med.143, 207‒216.

    Article  CAS  Google Scholar 

  4. Shin Y.S., Cha H.Y., Lee B.-S., Kang S.U., Hwang H.S., Kwon H.C., Kim C.-H., Choi E.C. 2016. Anti-cancer effect of luminacin, a marine microbial extract, in head and neck squamous cell carcinoma progression via autophagic cell death. Cancer Res. Treat.48, 738–752.

    Article  CAS  Google Scholar 

  5. Tamami U., Naoki K., Yinzhi L., Kouji B., Gantsev Sh., Kazuo U. 2017. Molecular design of sugar-free migracin analog migracinal that inhibits ovarian cancer cell migration and invasion. Kreativn. Khirurg. Onkol.7, 16‒20.

    Article  Google Scholar 

  6. Ilinskaya O., Decker K., Koschinski A., Dreyer F., Repp H. 2001. Bacillus intermedius ribonuclease as inhibitor of cell proliferation and membrane current. Toxicology. 156, 101–107.

    Article  CAS  Google Scholar 

  7. Mitkevich V.A., Petrushanko I.Y., Spirin P.V., Fedorova T.V., Kretova O.V., Tchurikov N.A., Prassolov V.S., Ilinskaya O.N., Makarov A.A. 2011. Sensitivity of acute myeloid leukemia Kasumi-1 cells to binase toxic action depends on the expression of KIT and AML1-ETO oncogenes. Cell Cycle.10, 4090‒4097.

    Article  CAS  Google Scholar 

  8. Mitkevich V.A., Makarov A.A., Ilinskaya O.N. 2014. Cell targets of antitumor ribonucleases. Mol. Biol. (Moscow). 48 (2), 214‒219.

    Article  CAS  Google Scholar 

  9. Mironova N.L., Petrushanko I.Y., Patutina O.A., Sen’kova A.V., Simonenko O.V., Mitkevich V.A., Markov O.V., Zenkova M.A., Makarov A.A. 2013. Ribonuclease binase inhibits primary tumor growth and metastases via apoptosis induction in tumor cells. Cell Cycle. 12, 2120‒2131.

    Article  CAS  Google Scholar 

  10. Ilinskaya O.N., Zelenikhin P.V., Kolpakov A.I., Makarov A.A., Mit’kevich V.A., Prasolov V.S., Safiullina D.R. 2008. Selective cytotoxicity of binase for fibroblasts expressing the ras and AML/ETO oncogenes Uch. Zap. Kazan.Gos. Univ. Ser. Estestv. Nauki.150, 268‒273.

    Google Scholar 

  11. Cabrera Fuentes E.A., Zelenikhin P.V., Kolpakov A.I., Preissner K., Ilinskaya O.N. 2010. Comparative cytotoxicity of binase for tumor and normal cells. Uch. Zap. Kazan.Gos. Univ. Ser. Estestv. Nauki.152, 143‒148.

    Google Scholar 

  12. Zelenikhin P.V., Mamedzade K.R., Ilinskaya O.N. 2012. Cytofluorometric characterization of the effect of RNases for pro- and eukaryotic cells. Klet. Transplantol. Tkan. Inzh.7, 62‒65.

    Google Scholar 

  13. Arpino V., Brock M., Gill S.E. 2015. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol. 44–46, 247‒254.

    Article  Google Scholar 

  14. Dudkina E., Ulyanova V., Shah Mahmud R., Khodzhaeva V., Dao L., Vershinina V., Kolpakov A., Ilinskaya O. 2016. Three-step procedure for preparation of pure Bacillus altitudinis ribonuclease. FEBS Open Biol. 19, 24‒32.

    Article  Google Scholar 

  15. Kolpakov A.I., Ilinskaya O.N. 1999. Optimization of a method for determining riboniclease activity by using high-polymer RNA. Klin. Lab. Diagn.5, 14‒16.

    Google Scholar 

  16. Schindelin J., Rueden C.T., Hiner M.C., Eliceiri K.W. 2015. The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. 82, 518‒529.

    Article  CAS  Google Scholar 

  17. Kozakov D., Hall D.R., Xia B., Porter K.A., Padhorny D., Yueh C., Beglov D., Vajda S. 2017. The ClusPro web server for protein–protein docking. Nat. Protoc. 12, 255‒278.

    Article  CAS  Google Scholar 

  18. Ilinskaya O.N., Singh I., Dudkina E., Ulyanova V., Kayumov A., Barreto G. 2016. Direct inhibition of oncogenic KRAS by Bacillus pumilus ribonuclease (binase). Biochim. Biophys. Acta–Mol.Cell Res. 1863, 1559–1567.

    CAS  Google Scholar 

  19. Edwards D.R., Handsley M.M., Pennington C.J. 2008. The ADAM metalloproteinases. Mol. Aspects Med. 29, 258‒289.

    Article  CAS  Google Scholar 

  20. Isaacson K.J., Martin Jensen M., Subrahmanyam N.B., Ghandehari H. 2017. Matrix-metalloproteinases as targets for controlled delivery in cancer: An analysis of upregulation and expression. J. Control Release. 259, 62‒75.

    Article  CAS  Google Scholar 

  21. Zhong Y., Lu Y.T., Sun Y., Shi Z.H., Li N.G., Tang Y.P., Duan J.A. 2018. Recent opportunities in matrix metalloproteinase inhibitor drug design for cancer. Expert. Opin. Drug Discov. 13, 75‒87.

    Article  CAS  Google Scholar 

  22. Batra J., Robinson J., Soares A.S., Fields A.P., Radisky D.C., Radisky E.S. 2012. Matrix metalloproteinase-10 (MMP-10) interaction with tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2: binding studies and crystal structure. J. Biol. Chem. 287, 15935‒15946.

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out as part of the Kazan Federal University (KFU) competitiveness program and was supported by grants from the Russian Foundation for Basic Research (project nos. 17-00-00059, 17-00-00060 and 17-00-00061 (COMFI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Mitkevich.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The study did not use biological materials obtained from humans or animals.

Conflict of interest. The authors declare they have no conflict of interest.

ADDITIONAL INFORMATION

The authors I.S. Ead Mohamed and A.I. Nadyrova contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenikhin, P.V., Ead Mohamed, I.S., Nadyrova, A.I. et al. Bacillus pumilus Ribonuclease Inhibits Migration of Human Duodenum Adenocarcinoma HuTu 80 Cells. Mol Biol 54, 128–133 (2020). https://doi.org/10.1134/S0026893320010173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320010173

Keywords:

Navigation