Skip to main content
Log in

Genetic Diversity in Frontotemporal Dementia

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Frontotemporal dementia is a progressive neurodegenerative disorder with high clinical, genetic, and pathomorphological diversity It is the third most common cause of dementia in all ages and the most common cause of early onset dementia (below 65). Despite its multifactorial nature, up to 40% of patients have a family history where the autosomal dominant inheritance type is seen in a quarter of cases. In this review, we describe key genes whose mutations can result in the development of frontotemporal dementia, the possible pathogenic mechanisms of the degenerative process, and provide information on the clinical features of the disease for different genetic variants. Special emphasis is placed on the frontotemporal dementia phenotype that is associated with amyotrophic lateral sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bang J., Spina S., Miller B.L. 2015. Frontotemporal dementia. Lancet. 386, 1672–1682.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Goldman J.S., Farmer J.M., Wood E.M., Johnson J.K., Boxer A., Neuhaus J., Lomen-Hoerth C., Wilhelmsen K.C., Lee V.M.Y., Grossman M., Miller B.L. 2005. Comparison of family histories in FTLD subtypes and related tauopathies. Neurology. 65, 1817–1819.

    Article  CAS  PubMed  Google Scholar 

  3. Rademakers R., Neumann M., Mackenzie I.R. 2012. Advances in understanding the molecular basis of frontotemporal dementia. Nat. Rev. Neurol. 8, 423–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shi J., Shaw C.L., Plessis D.D., Richardson A.M.T., Bailey L.K., Julien C., Stopford C., Thompson J., Varma A., Craufurd D, Tian J., Pickering-Brown S., Neary D., Snowden J.S., Mann D.M.A. 2005. Histopathological changes underlying frontotemporal lobar degeneration with clinicopathological correlation. Acta Neuropathol.110, 501‒512.

    Article  PubMed  Google Scholar 

  5. Mackenzie I.R.A., Neumann M., Baborie A., Sampathu D.M., Plessis D.D., Jaros E., Perry R.H., Trojanowski J.Q., Mann D.M.A., Lee V.M.Y. 2011. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol.122, 111‒113.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Forman M.S., Farmer J., Johnson J.K., Clark C.M., Arnold S.E., Coslett H.B., Chatterjee A., Hurtig H.I., Karlawish J.H., Rosen H.J., Van Deerlin V., Lee V.M.Y., Miller B.L., Trojanowski J.Q., Grossman M. 2006. Frontotemporal dementia: Clinicopathological correlations. Ann. Neurol.59, 952‒962.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Josephs K.A., Hodges J.R., Snowden J.S., Mackenzie I.R., Neumann M., Mann D.M., Dickson D.W. 2011. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol.122, 137‒153.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rohrer J.D., Lashley T., Schott J.M., Warren J.E., Mead S., Isaacs A.M., Beck J., Hardy J., de Silva R., Warrington E., Troakes C., Al-Sarraj S., King A., Borroni B., Clarkson M.J., et al. 2011. Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain.134, 2565‒2581.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Snowden J.S., Thompson J.C., Stopford C.L., Richardson A.M.T., Gerhard A., Neary D., Mann D.M.A. 2011. Clinical diagnosis of early-onset dementias: Diagnostic accuracy and clinico-pathological relationships. Brain.134, 2478‒2492.

    Article  PubMed  Google Scholar 

  10. Snowden J.S., Hu Q., Rollinson S., Halliwell N., Ro-binson A., Davidson Y.S., Momeni P., Baborie A., Griffiths T.D., Jaros E., Perry R.H., Richardson A., Pickering-Brown S.M., Neary D., Mann D.M.A. 2011. The most common type of FTLD-FUS (aFTLD-U) is associated with a distinct clinical form of frontotemporal dementia but is not related to mutations in the FUS gene. Acta Neuropathol.122, 99‒110.

    Article  CAS  PubMed  Google Scholar 

  11. Wilhelmsen K.C., Lynch T., Pavlou E., Higgins M., Nygaard T.G. 1994. Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21-22. Am. J. Hum.Genet. 55, 1159–1165.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lynch T., Sano M., Marder K.S., Bell K.L., Foster N.L., Defending R.F., Sima A.A.F., Keohane C., Nygaard T.G., Fahn S., Mayeux R., Rowland L.P., Wilhelmsen K.C. 1994. Clinical characteristics of a family with chromosome 17-linked disinhibition-dementia-parkinsonism-amyotrophy complex. Neurology.44, 1878–1884.

    Article  CAS  PubMed  Google Scholar 

  13. Hutton M., Lendon C.L., Rizzu P., Baker M., Froelich S., Houlden H., Pickering-Brown S., Chakraverty S., Isaacs A., Grover A., Hackett J., Adamson J., Lincoln S., Dickson D., Davies P., et al. 1998. Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 393, 702–705.

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y., Mandelkow E. 2016. Tau in physiology and pathology. Nat. Rev. Neurosci. 17, 5–21.

    Article  CAS  PubMed  Google Scholar 

  15. Boeve B., Hutton M. 2008. Refining frontotemporal dementia with parkinsonism linked to chromosome 17: introducing FTDP-17 (MAPT. and FTDP-17 (PGRN). Arch. Neurol.65, 460–464.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pickering-Brown S.M., Rollinson S., Plessis D., Morrison K.E., Varma A., Richardson A.M.T., Neary D., Snowden J.S., Mann D.M.A. 2008. Frequency and clinical characteristics of progranulin mutation carriers in the Manchester frontotemporal lobar degeneration cohort: Comparison with patients with MAPT and no known mutations. Brain.131, 721–731.

    Article  PubMed  Google Scholar 

  17. Rademakers R., Cruts M., Van Broeckhoven C. 2004. The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Hum. Mutat.24, 277–295.

    Article  CAS  PubMed  Google Scholar 

  18. Malkani R., D’Souza I., Gwinn-Hardy K., Schellenberg G.D., Hardy J., Momeni P. 2006. A MAPT mutation in a regulatory element upstream of exon 10 causes frontotemporal dementia. Neurobiol. Dis.22, 401–403.

    Article  CAS  PubMed  Google Scholar 

  19. Hong M., Zhukareva V., Vogelsberg-Ragaglia V., Wszolek Z., Reed L., Miller B.I., Geschwind D.H., Bird T.D., McKeel D., Goate A., Morris J.C., Wilhelmsen K.C., Schellenberg G.D., Trojanowski J.Q., Lee V.M.Y. 1998. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science. 282, 1914–1917.

    Article  CAS  PubMed  Google Scholar 

  20. Goedert M., Jakes R., Crowther R.A. 1999. Effects of frontotemporal dementia FTDP-17 mutations on heparin-induced assembly of tau filaments. FEBS Lett.450, 306–311.

    Article  CAS  PubMed  Google Scholar 

  21. Rovelet-Lecrux A., Lecourtois M., Thomas-Anterion C., Le Ber I., Brice A., Frebourg T., Hannequin D., Campion D. 2009. Partial deletion of the MAPT gene: A novel mechanism of FTDP-17. Hum. Mutat.30, E591‒E602.

    Article  PubMed  Google Scholar 

  22. Rovelet-Lecrux A., Hannequin D., Guillin O., Legallic S., Jurici S., Wallon D., Frebourg T., Campion D. 2010. Frontotemporal dementia phenotype associated with MAPT gene duplication. J. Alzheimer’s Dis. 21, 897–902.

    Article  CAS  Google Scholar 

  23. Mann D.M.A., Snowden J.S. 2017. Frontotemporal lobar degeneration: Pathogenesis, pathology and pathways to phenotype. Brain Pathol.27, 723–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baker M., Mackenzie I.R., Pickering-Brown S.M., Gass J., Rademakers R., Lindholm C., Snowden J., Adamson J., Sadovnick A.D., Rollinson S., Cannon A., Dwosh E., Neary D., Melquist S., Richardson A., et al. 2006. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 442, 916–919.

    Article  CAS  PubMed  Google Scholar 

  25. Cruts M., Gijselink I., Van Der Zee J., Engelborghs S., Wils H., Pirici D., Rademakers R., Vandenberghe R., Dermaut B., Martin J.J., van Duijn C., Peeters K., Sciot R., Santens P., De Pooter T., et al. 2006. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature. 442, 920–924.

    Article  CAS  PubMed  Google Scholar 

  26. Petkau T.L., Leavitt B.R. 2014. Progranulin in neurodegenerative disease. Trends Neurosci.37, 388–398.

    Article  CAS  PubMed  Google Scholar 

  27. Hrabal R., Chen Z., James S., Bennett H.P., Ni F. 1996. The hairpin stack fold, a novel protein architecture for a new family of protein growth factors. Nat. Struct. Biol.3, 747–752.

    Article  CAS  PubMed  Google Scholar 

  28. Gass J., Cannon A., Mackenzie I.R., Boeve B., Baker M., Adamson J., Josephs K. 2006. Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum. Mol. Genet. 15, 2988–3001.

    Article  CAS  PubMed  Google Scholar 

  29. Yu C.E., Bird T.D., Bekris L.M., Montine T.J., Leverenz J.B., Steinbart E., Wood E.M. 2010. The spectrum of mutations in progranulin: A collaborative study screening 545 cases of neurodegeneration. Arch. Neurol. 67, 161–170.

    PubMed  PubMed Central  Google Scholar 

  30. Pietroboni A.M., Fumagalli G.G., Ghezzi L., Fenoglio C., Cortini F., Serpente M., Bassi M. 2011. Phenotypic heterogeneity of the GRN Asp22fs mutation in a large Italian kindred. J. Alzheimer’s Dis. 24, 253–259.

    Article  Google Scholar 

  31. Neumann M., Sampathu D.M., Kwong L.K., Truax A.C., Micsenyi M.C., Chou T.T., McCluskey L.F. 2006. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 314, 130–133.

    Article  CAS  PubMed  Google Scholar 

  32. Smith K.R., Damiano J., Franceschetti S., Carpenter S., Canafoglia L., Morbin M., Sims, K.B. 2012. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am. J. Hum. Genet. 90, 1102–1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mole S.E., Cotman S.L. 2015. Genetics of the neuronal ceroid lipofuscinoses (Batten disease). Biochim. Biophys. Acta–Mol.Basis Dis. 1852, 2237–2241.

    Article  CAS  Google Scholar 

  34. Benussi A., Padovani A., Borroni B. 2015. Phenotypic heterogeneity of monogenic frontotemporal dementia. Front. Aging Neurosci. 7, 171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Le Ber I., Camuzat A., Hannequin D., Pasquier F., Guedj E., Rovelet-Lecrux A., Puel M. 2008. Phenotype variability in progranulin mutation carriers: A clinical, neuropsychological, imaging and genetic study. Brain.131, 732–746.

    Article  PubMed  Google Scholar 

  36. Cerami C., Marcone A., Galimberti D., Villa C., Scarpini E., Cappa S.F. 2011. From genotype to phenotype: Two cases of genetic frontotemporal lobar degeneration with premorbid bipolar disorder. J. Alzheimer’s Dis.27, 791–797.

    Article  CAS  Google Scholar 

  37. Ghidoni R., Benussi L., Glionna M., Franzoni M., Binetti G. 2008. Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration. Neurology. 71, 1235–1239.

    Article  CAS  PubMed  Google Scholar 

  38. Carecchio M., Fenoglio C., De Riz M., Guidi I., Comi C., Cortini F., Monaco F. 2009. Progranulin plasma levels as potential biomarker for the identification of GRN deletion carriers. A case with atypical onset as clinical amnestic mild cognitive impairment converted to Alzheimer’s disease. J. Neurol. Sci.287, 291–293.

    Article  CAS  PubMed  Google Scholar 

  39. Hosler B., Siddique T., Sapp P.C., Sailor W., Huang M.C., Hossain A., Hung W.Y. 2000. Linkage of familial amyotrophic lateral to chromosome 9q21-q22. J. Am. Med. Assoc. 284, 1664–1669.

    Article  CAS  Google Scholar 

  40. DeJesus-Hernandez M., Mackenzie I.R., Boeve B.F., Boxer A.L., Baker M., Rutherford N.J., Kouri N. 2011. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 72, 245–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Renton A.E., Majounie E., Waite A., Simón-Sánchez J., Rollinson S., Gibbs J.R., Kalimo H. 2011. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron.72, 257–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van Blitterswijk M., DeJesus-Hernandez M., Niemantsverdriet E., Murray M.E., Heckman M.G., Diehl N.N., Serrano G. 2013. Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): A cross-sectional cohort study. Lancet Neurol.12, 978–988.

    Article  CAS  PubMed  Google Scholar 

  43. Ishiura H., Tsuji S. 2015. Epidemiology and molecular mechanism of frontotemporal lobar degeneration/amyotrophic lateral sclerosis with repeat expansion mutation in C9orf72.J. Neurogenet.29, 85–94.

    Article  CAS  PubMed  Google Scholar 

  44. Cooper-Knock J., Kirby J., Highley R., Shaw P.J. 2015. The spectrum of C9orf72-mediated neurodegeneration and amyotrophic lateral sclerosis. Neurotherapeutics. 12, 326–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Galimberti D., Fenoglio C., Serpente M., Villa C., Bonsi R., Arighi A., Clodomiro A. 2013. Autosomal dominant frontotemporal lobar degeneration due to the C9ORF72 hexanucleotide repeat expansion: late-onset psychotic clinical presentation. 2013. Biol. Psychiatry.74, 384–391.

    Article  CAS  PubMed  Google Scholar 

  46. Galimberti D., Reif A., Dell’Osso B., Palazzo C., Villa C., Fenoglio C., Paoli R.A. 2014. C9ORF72 hexanucleotide repeat expansion as a rare cause of bipolar disorder. Bipolar Disorders.16, 448–449.

    Article  PubMed  Google Scholar 

  47. Galimberti D., Reif A., Dell’Osso B., Kittel-Schneider S., Leonhard C., Herr A., Cioffi S.M. 2014. C9ORF72 hexanucleotide repeat expansion is a rare cause of schizophrenia. Neurobiol. Aging.35, 1214.e7‒1214.e10.

    Article  CAS  Google Scholar 

  48. Majounie E., Abramzon Y., Renton A.E., Perry R., Bassett S.S., Pletnikova O., Traynor B.J. 2012. Repeat expansion in C9ORF72 in Alzheimer’s disease. N. Engl. J. Med.366, 283–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gendron T.F., Bieniek K.F., Zhang Y.J., Jansen-West K., Ash P.E., Caulfield T., Cosio, D.M. 2013. Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol.126, 829–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mori K., Arzberger T., Grässer F.A., Gijselinck I., May S., Rentzsch K., Van Broeckhoven C. 2013. Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol.126, 881–893.

    Article  CAS  PubMed  Google Scholar 

  51. Mizielinska S., Isaacs A.M. 2014. C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia: Gain or loss of function? Curr. Opin. Neurol.27, 515–523.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Freibaum B.D., Lu Y., Lopez-Gonzalez R., Kim N.C., Almeida S., Lee K.H., Petrucelli L. 2015. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature.525, 129–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. May S., Hornburg D., Schludi M.H., Arzberger T., Rentzsch K., Schwenk B.M., Mann M. 2014. C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathol.128, 485–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lehmer C., Oeckl P., Weishaupt J.H., Volk A.E., Diehl-Schmid J., Schroeter M.L., Landwehrmeyer B. 2017. Poly-GP in cerebrospinal fluid links C9orf72-associated dipeptide repeat expression to the asymptomatic phase of ALS/FTD. EMBO Mol. Med.9, 859–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Haeusler A.R., Donnelly C.J., Rothstein J.D. 2016. The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat. Rev. Neurosci.17, 383–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reddy K., Zamiri B., Stanley S.Y., Macgregor R.B., Pearson C.E. 2013. The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures. J. Biol. Chem.288, 9860–9866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gijselinck I., Van Mossevelde S., van der Zee J., Sieben A., Engelborghs S., De Bleecker J., Heeman B. 2016. The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter. Mol. Psychiatry.21, 1112–1124.

    Article  CAS  PubMed  Google Scholar 

  58. Skibinski G., Parkinson N.J., Brown J.M., Chakrabarti L., Lloyd S.L., Hummerich H., Brandner S. 2005. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat. Genet.37, P. 806.

    Article  CAS  PubMed  Google Scholar 

  59. Urwin H., Ghazi-Noori S., Collinge J., Isaacs A. 2009. The role of CHMP2B in frontotemporal dementia. Biochem. Soc. Transactions.37, 208–212.

    Article  CAS  Google Scholar 

  60. Lindquist S.G., Brændgaard H., Svenstrup K., Isaacs A.M., Nielsen J.E., FReJA Consortium. 2008. Frontotemporal dementia linked to chromosome 3 (FTD-3)-current concepts and the detection of a previously unknown branch of the Danish FTD-3 family. Eur. J. Neurol.15, 667–670.

    Article  CAS  PubMed  Google Scholar 

  61. Urwin H., Authier A., Nielsen J.E., Metcalf D., Powell C., Froud K., Fisher E.M. 2010. Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations. Hum. Mol. Genet.19, 2228–2238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. M. Isaacs A., Johannsen P., Holm I., E. Nielsen J. 2011. Frontotemporal dementia caused by CHMP2B mutations. Curr. Alzheimer Res.8, 246–251.

  63. Watts G.D.J., Wymer J., Kovach M.J., Mehta S.G., Mumm S., Darvish D., Kimonis V.E. 2004. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat. Genet.36, 377–381.

    Article  CAS  PubMed  Google Scholar 

  64. Kimonis V.E., Fulchiero E., Vesa J., Watts G. 2008. VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: Review of a unique disorder. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis.1782, 744‒748.

    Article  CAS  Google Scholar 

  65. Mehta S.G., Khare M., Ramani R., Watts G.D.J., Simon M., Osann K.E., Donkervoort S., Dec E., Nalbandian A., Platt J., Pasquali M., Wang A., Mozaffar T., Smith C.D., Kimonis V.E. 2013. Genotype–phenotype studies of VCP-associated inclusion body myopathy with Paget disease of bone and/or frontotemporal dementia. Clin. Genet.83, 422‒431.

    Article  CAS  PubMed  Google Scholar 

  66. Spina S., Van Laar A.D., Murrell J.R., Hamilton R.L., Kofler J.K., Epperson F., Ghetti B. 2013. Phenotypic variability in three families with valosin-containing protein mutation. Eur. J. Neurol.20, 251–258.

    Article  CAS  PubMed  Google Scholar 

  67. Ju J.S., Weihl C.C. 2010. Inclusion body myopathy, Paget’s disease of the bone and fronto-temporal dementia: A disorder of autophagy. Hum. Mol. Genet.19, 38–45.

    Article  CAS  Google Scholar 

  68. Ng A.S.L., Rademakers R., Miller B.L. 2015. Frontotemporal dementia: A bridge between dementia and neuromuscular disease. Ann. N.Y. Acad. Sci.1338, 71–93.

    Article  CAS  PubMed  Google Scholar 

  69. Rea S.L., Majcher V., Searle M.S., Layfield R. 2014. SQSTM1 mutations ‒ Bridging Paget disease of bone and ALS/FTLD. Exp. Cell Res.325, 27–37.

    Article  CAS  PubMed  Google Scholar 

  70. Bannwarth S., Ait-El-Mkadem S., Chaussenot A., Genin E.C., Lacas-Gervais S., Fragaki K., Verschueren A. 2014. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain.137, 2329–2345.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhang M., Xi Z., Zinman L., Bruni A.C., Maletta R.G., Curcio S.A., Sorbi S. 2015. Mutation analysis of CHCHD10 in different neurodegenerative diseases. Brain.138, e380.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Perrone F., Nguyen, H.P., Van Mossevelde S., Moisse M., Sieben A., Santens P., Cras P. 2017. Investigating the role of ALS genes CHCHD10 and TUBA4A in Belgian FTD-ALS spectrum patients. Neurobiol. Aging.51, 177.e9‒177.e16.

    Article  CAS  Google Scholar 

  73. Cirulli E.T., Lasseigne B.N., Petrovski S., Sapp P.C., Dion P.A., Leblond C.S., Ren Z. 2015. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science.347, 1436–1441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pottier C., Bieniek K.F., Finch N., van de Vorst M., Baker M., Perkersen R., DeTure M. 2016. Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar dementia without motor neuron disease. Acta Neuropathol. 130, 77–92.

    Article  CAS  Google Scholar 

  75. Rainero I., Rubino E., Michelerio A., D’Agata F., Gentile S., Pinessi L. 2017. Recent advances in the molecular genetics of frontotemporal lobar degeneration. Funct. Neurol.32, 7‒16.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Neumann M., Valori C.F., Ansorge O., Kretzschmar H.A., Munoz D.G., Kusaka H., Mackenzie I.R. 2012. Transportin 1 accumulates specifically with FET proteins but no other transportin cargos in FTLD-FUS and is absent in FUS inclusions in ALS with FUS mutations. Acta Neuropathol.124, 705–716.

    Article  CAS  PubMed  Google Scholar 

  77. Dillen L., Van Langenhove T., Engelborghs S., Vandenbulcke M., Sarafov S., Tournev I., Jordanova A. 2013. Explorative genetic study of UBQLN2 and PFN1 in an extended Flanders-Belgian cohort of frontotemporal lobar degeneration patients. Neurobiol. Aging.34, 1711.e1‒1711.e5.

    Article  CAS  Google Scholar 

  78. Deerlin V.M., Sleiman P.M., Martinez-Lage M., Chen-Plotkin A., Wang L.S., Graff-Radford N.R., Arnold S.E., Mann D.M.A., Pickering-Brown S.M., Seelaar H., Heutink P., van Swieten J.C., Murrell J.R., Ghetti B., Spina S., et al. 2010. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP43 inclusions. Nat. Genet.42, 234–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cruchaga C., Graff C., Chiang H.H., Wang J., Hinrichs A.L., Spiegel N., Goate A. 2011. Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. Arch. Neurol.68, 581–586.

    PubMed  PubMed Central  Google Scholar 

  80. Gallagher M.D., Suh E., Grossman M., Elman L., McCluskey L., Van Swieten, J.C., Rohrer J.D. 2014. TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathol.127, 407–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Van Blitterswijk M., Mullen B., Nicholson A.M., Bieniek, K.F., Heckman M.G., Baker M.C., Hsiung G.Y.R. TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. Acta Neuropathol.127, 397–406.

  82. Brady O.A., Zheng Y., Murphy K., Huang M., Hu F. 2013. The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. Hum. Mol. Genet.22, 685–695.

    Article  CAS  PubMed  Google Scholar 

  83. Rollinson S., Rohrer J.D., van der Zee J., Sleegers K., Mead S., Engelborghs S., Pickering-Brown S.M. 2011. No association of PGRN 3’UTR rs5848 in frontotemporal lobar degeneration. Neurobiol. Aging.32, 754–755.

    Article  CAS  PubMed  Google Scholar 

  84. Ferrari R., Hernandez D.G., Nalls M.A., Rohrer J.D., Ramasamy A., Kwok J.R. 2014. Frontotemporal dementia and its subtypes: A genome-wide association study. Lancet Neurol.13, 686–699.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tsai R.M., Boxer A.L. 2016. Therapy and clinical trials in frontotemporal dementia: Past, present, and future. J. Neurochem.20, 211–221.

    Article  CAS  Google Scholar 

Download references

Funding

The work is supported by The Russian Foundation for Basic Research (project no. 19-015-00533).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Shpilyukova.

Ethics declarations

This paper does not contain any studies involving humans or animals as subjects.

Conflict of interests. The authors declare no conflicts of interests.

Additional information

Translated by A. Khaitin

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; FTD, frontotemporal dementia; bvFTD, behavioral variant FTD; PPA, primary progressive aphasia; svPPA, semantic variant PPA; avPPA, agrammatic variant PPA; FTD-ALS, FTD associated with amyotrophic lateral sclerosis (ALS); FTLD, frontotemporal lobar degeneration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shpilyukova, Y.A., Fedotova, E.Y. & Illarioshkin, S.N. Genetic Diversity in Frontotemporal Dementia. Mol Biol 54, 13–23 (2020). https://doi.org/10.1134/S0026893320010136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320010136

Keywords:

Navigation