Skip to main content
Log in

Geometry and dynamics of the Schur–Cohn stability algorithm for one variable polynomials

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We provided a detailed study of the Schur–Cohn stability algorithm for Schur stable polynomials of one complex variable. Firstly, a real analytic principal \(\mathbb {C}\times \mathbb {S}^1\)-bundle structure in the family of Schur stable polynomials of degree n is constructed. Secondly, we consider holomorphic \(\mathbb {C}\)-actions \(\mathscr {A}\) on the space of polynomials of degree n. For each orbit \(\{ s \cdot P(z) \ \vert \ s \in \mathbb {C}\}\) of \(\mathscr {A}\), we study the dynamical problem of the existence of a complex rational vector field \(\mathbb {X}(z)\) on \(\mathbb {C}\) such that its holomorphic s-time describes the geometric change of the n-root configurations of the orbit \(\{ s \cdot P(z) = 0 \}\). Regarding the above \(\mathbb {C}\)-action coming from the \(\mathbb {C}\times \mathbb {S}^1\)-bundle structure, we prove the existence of a complex rational vector field \(\mathbb {X}(z)\) on \(\mathbb {C}\), which describes the geometric change of the n-root configuration in the unitary disk \(\mathbb {D}\) of a \(\mathbb {C}\)-orbit of Schur stable polynomials. We obtain parallel results in the framework of anti-Schur polynomials, which have all their roots in \(\mathbb {C}\backslash \overline{\mathbb {D}}\), by constructing a principal \(\mathbb {C}^* \times \mathbb {S}^1\)-bundle structure in this family of polynomials. As an application for a cohort population model, a study of the Schur stability and a criterion of the loss of Schur stability are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We simplify Schur stable to say only Schur.

  2. For simplicity, here we use degree n; however, the case \(\le n\) is also useful.

  3. As a matter of record, a Lie group action on a manifold, \(G \times M \longrightarrow M \) is well defined for all the pairs \(\{ (g,p)\}\), whereas a local action is defined only for a certain open subset of pairs \(\{(g, p)\}\); here we agree that flows can be local or global \(\mathbb {C}\)-actions.

References

  1. Aguirre-Hernández B, Cisneros-Molina JL, Frías-Armenta ME (2012) Polynomials in control theory parametrized by their roots. Int J Math Math Sci 2012:1–19. https://doi.org/10.1155/2012/595076

    Article  MathSciNet  MATH  Google Scholar 

  2. Aguirre-Hernández B, Frías-Armenta ME, Verduzco F (2009) Smooth trivial vector bundle structure of the space of Hurwitz polynomials. Automatica 45(12):2864–2868. https://doi.org/10.1016/j.automatica.2009.09.011

    Article  MathSciNet  MATH  Google Scholar 

  3. Aguirre-Hernández B, Frias-Armenta ME, Verduzco F (2012) On differential structures of polynomial spaces in control theory. J Syst Sci Syst Eng 21(3):372–382. https://doi.org/10.1007/s11518-012-5197-y

    Article  Google Scholar 

  4. Aguirre-Hernandez B, García-Sosa R, Leyva H, Solis-Duan J, Carrillo FA (2015) Conditions for the Schur stability of segments of polynomials of the same degree. Bol Soc Mat Mex 21:309–321. https://doi.org/10.1007/s40590-015-0054-x

    Article  MathSciNet  MATH  Google Scholar 

  5. Alvarez-Parrilla A, Muciño-Raymundo J (2017) Dynamics of singular complex analytic vector fields with essential singularities I. Conform Geom Dyn 21:126–224. https://doi.org/10.1090/ecgd/306

    Article  MathSciNet  MATH  Google Scholar 

  6. Ancochea G (1953) Zeros of self-inversive polynomials. Proc Am Math Soc 4:901–902. https://doi.org/10.1090/S0002-9939-1953-0058748-8

    Article  MathSciNet  Google Scholar 

  7. Berenstein CA, Gay R (1991) Complex variables an introduction. Springer, New York. https://doi.org/10.2307/3618600

    Book  MATH  Google Scholar 

  8. Bhattacharyya SP, Chapellat H, Keel LH (1995) Robust control: the parametric approach. Prentice-Hall, Boca Rotan. https://doi.org/10.1016/S1474-6670

    Book  MATH  Google Scholar 

  9. Bonsal FF, Marden M (1952) Zeros of self-inversive polynomials. Proc Am Math Soc 3:471–475. https://doi.org/10.1090/S0002-9939-1952-0047828-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Bose NK (1993) Digital filters: theory and applications. Elsevier Sciencie, Nort-Holland. https://doi.org/10.1137/1030022

    Book  Google Scholar 

  11. Cohn A (1922) Über die anzahl der wurzeln einer algebrischen glechung in einem kreise. Math Z 14:110–148

    Article  MathSciNet  Google Scholar 

  12. Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE (1996) On the Lambert W function. Adv Comput Math 5(4):329–359. https://doi.org/10.1007/BF02124750

    Article  MathSciNet  MATH  Google Scholar 

  13. Duistermaat JJ, Kolk JAC (2000) Lie groups. Springer, Berlin. https://doi.org/10.1017/S0013091501214412

    Book  MATH  Google Scholar 

  14. Fam AT, Meditch JS (1978) A canonical parameter space for linear systems design. IEEE Trans Automat Control 23(3):454–458. https://doi.org/10.1109/TAC.1978.1101744

    Article  MathSciNet  MATH  Google Scholar 

  15. Gargantini I (1971) The numerical stability of the Schur–Cohn criterion. SIAM J Numer Anal 8(1):24–29. https://doi.org/10.1137/0708003

    Article  MathSciNet  MATH  Google Scholar 

  16. Gregor J (1958) Dynamické systémy s regulární pravou stranou I. Pokroky Mat Fyz Astron 3:153–160

    Google Scholar 

  17. Gregor J (1958) Dynamické systémy s regulární pravou stranou II. Pokroky Mat Fyz Astron 3:266–270

    Google Scholar 

  18. Griffiths P, Harris J (1978) Principles of algebraic geometry. Wiley, New York. https://doi.org/10.1002/9781118032527

    Book  MATH  Google Scholar 

  19. Hansen VL (1980) Coverings defined by Weierstrass polynomials. J Reine Angew Math 314:29–39

    MathSciNet  MATH  Google Scholar 

  20. Hansen VL (1989) Braids and coverings: selected topics. Cambridge University Press, Cambridge. https://doi.org/10.1112/blms/23.1.104

    Book  MATH  Google Scholar 

  21. Hinrichsen D, Pritchard AJ (2005) Mathematical systems theory I, modelling, state space analysis, stability and robustness. Springer, New York. https://doi.org/10.1108/03684920510614885

    Book  MATH  Google Scholar 

  22. Jury EI (1958) Sampled-data control systems. Wiley, New York. https://doi.org/10.1036/1097-8542.600300

    Book  MATH  Google Scholar 

  23. Katz G (2003) How tangents solve algebraic equations, or a remarkable geometry of discriminant varieties. Expo Math 21(3):219–261. https://doi.org/10.1016/S0723-0869(03)80002-6

    Article  MathSciNet  MATH  Google Scholar 

  24. López JL, Muciño-Raymundo J (2000) On the problem of deciding whether a holomorphic vector field is complete. In: Complex analysis and related topics (Cuernavaca, 1996), operator theory: advances and applications, vol 114. Birkhäuser, Basel, pp 171–195. https://doi.org/10.1007/978-3-0348-8698-7_13

    Chapter  Google Scholar 

  25. Muciño-Raymundo J, Valero-Valdés C (1995) Bifurcations of meromorphic vector fields on the Riemann sphere. Ergod Theory Dyn Syst 15:1211–1222. https://doi.org/10.1017/S0143385700009883

    Article  MathSciNet  MATH  Google Scholar 

  26. Muciño-Raymundo J (2002) Complex structures adapted to smooth vector fields. Math Ann 322(2):229–265. https://doi.org/10.1007/s002080100206

    Article  MathSciNet  MATH  Google Scholar 

  27. Rahman QI, Schmeisser G (2002) Analytic theory of polynomials, London mathematical society monographs 26. Claredon Press, Oxford

    Google Scholar 

  28. Rudolph L (1983a) Algebraic functions and closed braids. Topology 22(2):191–202. https://doi.org/10.1016/0040-9383(83)90031-9

    Article  MathSciNet  MATH  Google Scholar 

  29. Schur J (1918) Über potenzreihen, die im innern des einheitskreises beschänk sind. Journal für die reine und angewandte Mathematik 1917(147):122–145

    Google Scholar 

  30. Strebel K (1984) Quadratic differentials. Springer, Berlin. https://doi.org/10.1007/978-3-662-02414-0_2

    Book  MATH  Google Scholar 

  31. Strikwerda JC (2004) Finite difference schemes and partial differential equations, 2nd edn. SIAM, Philadelphia. https://doi.org/10.1137/1.9780898717938

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Eduardo Frías-Armenta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguirre-Hernández, B., Frías-Armenta, M.E. & Muciño-Raymundo, J. Geometry and dynamics of the Schur–Cohn stability algorithm for one variable polynomials. Math. Control Signals Syst. 31, 545–587 (2019). https://doi.org/10.1007/s00498-019-00245-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-019-00245-8

Keywords

Navigation