Skip to main content
Log in

A Study on Scale Free Social Network Evolution Model with Degree Exponent < 2

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Inspired by real world phenomena, in this paper, the authors present a power law evolutional network model with degree exponent β < 2. Combinatorial probabilistic method is applied to the theoretical analysis of the presented model. In the proposed model, each time stamp the number of links among a newly added node and old ones follows Poisson distribution with parameter λ and selection probability p. The authors derive exact analytical relationship between the exponent of the power law β, the parameters λ and p. Simulation result is consistent with the exponent β analytical solution. Both theoretical analysis and simulation results show that the presented network evolution model has two obvious real world social network characteristics, degree exponent β < 2 and bending phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watts D J and Strogatz S H, Collective dynamics of small-world networks, Nature, 1998, 393(6684): 440.

    Article  Google Scholar 

  2. Erdos P and Rényi A, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci., 1960, 5(1): 17–60.

    MathSciNet  MATH  Google Scholar 

  3. Barabási A L and Albert R, Emergence of scaling in random networks, Science, 1999, 286(5439): 509–512.

    Article  MathSciNet  Google Scholar 

  4. Albert R and Barabási A L, Statistical mechanics of complex networks, Reviews of Modern Physics, 2002, 74(1): 47.

    Article  MathSciNet  Google Scholar 

  5. Dorogovtsev S N, Mendes J F F, and Samukhin A N, Structure of growing networks with preferential linking, Physical Review Letters, 2000, 85(21): 4633.

    Article  Google Scholar 

  6. Krapivsky P L, Redner S, and Leyvraz F, Connectivity of growing random networks, Physical Review Letters, 2000, 85(21): 4629.

    Article  Google Scholar 

  7. Bollobás B, Riordan O, Spencer J, et al., The degree sequence of a scale-free random graph process, Random Structures and Algorithms, 2001, 18(3): 279–290.

    Article  MathSciNet  Google Scholar 

  8. Seyed-Allaei H, Bianconi G, and Marsili M, Scale-free networks with an exponent less than two, Physical Review E, 2006, 73(4): 046113.

    Article  Google Scholar 

  9. Broder A, Kumar R, Maghoul F, et al., Graph structure in the web, Computer Networks, 2000, 33(1–6): 309–320.

    Article  Google Scholar 

  10. Medina A, Matta I, and Byers J, On the origin of power laws in Internet topologies, ACM SIGCOMM Computer Communication Review, 2000, 30(2): 18–28.

    Article  Google Scholar 

  11. Redner S, How popular is your paper? An empirical study of the citation distribution, The European Physical Journal B-Condensed Matter and Complex Systems, 1998, 4(2): 131–134.

    Article  Google Scholar 

  12. Jeong H, Mason S P, Barabási A L, et al., Lethality and centrality in protein networks, Nature, 2001, 411(6833): 41.

    Article  Google Scholar 

  13. Leskovec J, Huttenlocher D, and Kleinberg J, Signed networks in social media, CHI. 2010.

    Google Scholar 

  14. Adamic L A and Glance N, The political blogsphere and the 2004 US election: Divided they blog, Proceedi ngs of the 3rd international workshop on Link discovery ACM, 2005, 36–43.

    Chapter  Google Scholar 

  15. Leskovec J, Lang K, Dasgupta A, et al., Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters, Internet Mathematics, 2009, 6(1): 29–123.

    Article  MathSciNet  Google Scholar 

  16. Richardson M, Agrawal R, and Domingos P, Trust management for the semantic web, ISWC. 2003.

    Google Scholar 

  17. Ebel H, Mielsch L I, and Bornholdt S, Scale-free topology of e-mail networks, Physical Review E, 2002, 66(3): 035103.

    Article  Google Scholar 

  18. Jovanovic M J, Scalability issues in large peer-to-peer networks — A case study of gnutella, Technical Report, Univ. of Cincinnati. 2001.

    Google Scholar 

  19. Newman M E J, Scientific collaboration networks I. Network construction and fundamental results, Physical Review E, 2001, 64(1): 016131.

    Article  MathSciNet  Google Scholar 

  20. Cancho R F and Solé R V, The small world of human language, Proceedings of the Royal Society of London B: Biological Sciences, 2001, 268(1482): 2261–2265.

    Article  Google Scholar 

  21. Newman M E J, The structure and function of complex networks, SIAM Review, 2003, 45(2): 167–256.

    Article  MathSciNet  Google Scholar 

  22. Zhongbao K and Changshui Z, Reply networks on a bulletin board system, Physical Review E, 2003, 67(3): 036117.

    Article  Google Scholar 

  23. Guo J L and Wang L N, Scale-free networks with the power-law exponent between 1 and 3, Acta Phys. Sin., 2007, 56(10): 5635–5639.

    MathSciNet  MATH  Google Scholar 

  24. Li J, Zhou S, Li X, et al., An insertion-deletion-compensation model with Poisson process for scale-free networks, Future Generation Computer Systems, 2018, 83: 425–430.

    Article  Google Scholar 

  25. Wu J, Tan Y, Deng H, et al., Some properties of scale-free networks with scaling exponent, Journal of Systems Science Mathematical Sciences, 2008, 28(7): 811–821.

    MathSciNet  MATH  Google Scholar 

  26. Liu Y Y, Slotine J J, and Barabási A L, Controllability of complex networks, Nature, 2011, 473(7346): 167.

    Article  Google Scholar 

  27. Menichetti G, Dall Asta L, and Bianconi G, Network controllability is determined by the density of low in-degree and out-degree nodes, Physical Review Letters, 2014, 113(7): 078701.

    Article  Google Scholar 

  28. Fan C, Lu L, Dewey T G, et al, Duplication models for biological networks, Journal of Computational Biology, 2003, 10(5): 677–687.

    Article  Google Scholar 

  29. Shao J, Havlin S, and Stanley H E, Dynamic opinion model and invasion percolation, Physical Review Letters, 2009, 103(1): 018701.

    Article  Google Scholar 

  30. Adamic L A, Lukose R M, Puniyani A R, et al., Search in power-law networks, Physical Review E, 2001, 64(4): 046135.

    Article  Google Scholar 

  31. Toroczkai Z and Bassler K E, Network dynamics: Jamming is limited in scale-free systems, Nature, 2004, 428(6984): 716.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenpeng Li.

Additional information

This research was supported by the National Natural Science Foundation of China under the Grant Nos. 71661001, 61473284, the Key Program of National Natural Science Foundation of China under Grant No. 71731002.

This paper was recommended for publication by Editor CHEN Jie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Tang, X. A Study on Scale Free Social Network Evolution Model with Degree Exponent < 2. J Syst Sci Complex 33, 87–99 (2020). https://doi.org/10.1007/s11424-020-8007-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-020-8007-5

Keywords

Navigation