Skip to main content
Log in

72.3 W 1064 nm Nd:YAG Single Crystal Fiber Laser and Intracavity Double Frequency Generation

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

As a bridge between crystal and fiber, the single crystal fiber (SCF) can combine the advantages of the two materials and show great potential in high-power lasers. In this paper, we select a Nd:YAG SCF as the gain medium in a diode-end-pumped linear cavity. The Nd:YAG SCF with the dimensions of ∅ = 1 mm × 50 mm was manufactured using the micro-pulling-down technique. At an incident pump power of 153.0 W, the maximum output power of the 1064 nm laser was 72.3 W. To the best of our knowledge, this is the highest power obtained in Nd:YAG SCF lasers. In addition, using a second-type phase-matched KTP crystal, the 10 W continuous wave green laser was obtained with an intracavity double-frequency structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Délen, S. Piehler, J. Didierjean, et al., Opt. Lett., 37, 2898 (2012).

    Article  ADS  Google Scholar 

  2. M. Kienel, M. Müller, S. Demmler, et al., Opt. Lett., 39, 3278 (2014).

    Article  ADS  Google Scholar 

  3. D. Sangla, N. Aubry, J. Didierjean, et al., Proc. SPIE, 7193, 71930L (2015).

  4. A. S. S. De Camargo, L. A. O. Nunes, D. R. Ardila, and J. P. Andreeta, Opt. Lett., 29, 59 (2004).

    Article  ADS  Google Scholar 

  5. Y. K. Lin, Q. H. Wu, S. Z. Wang, et al., Opt. Lett., 43, 1219 (2018).

    Article  ADS  Google Scholar 

  6. J. Wang, Q. Song, Y. Sun, et al., Opt. Lett., 44, 455 (2019).

    Article  ADS  Google Scholar 

  7. Y. Li, K. Miller, E. G. Johnson, G. D. Nie, et al., Opt. Express, 24, 9751 (2016).

    Article  ADS  Google Scholar 

  8. E. Damiano, J. Shu, A. Sottile, and M. Tonelli, J. Phys. D: Appl. Phys., 50, 135107 (2017).

  9. F. Lesparre, J. T. Gomes, X. Delen, et al., Opt. Lett., 41, 1628 (2016).

    Article  ADS  Google Scholar 

  10. C. D. Nie, S. Bera, and J. A. Harrington, Opt. Express, 24, 15522 (2016).

    Article  ADS  Google Scholar 

  11. C. A. Burrus and J. Stone, Appl. Phys. Lett., 26, 318 (1975).

    Article  ADS  Google Scholar 

  12. M. J. F. Digonnet, C. J. Gaeta, and H. J. Shaw, J. Lightwave Technol., LT-4, 454 (1986).

    Article  ADS  Google Scholar 

  13. D. A. Nikolaev, S. Ya. Rusanov, I. A. Shcherbakov,et al., Laser Phys., 9, 319 (1999).

  14. J. Didierjean, M. Castaing, F. Balembois, and P. Georges, Opt. Lett., 31, 3468 (2006).

    Article  ADS  Google Scholar 

  15. D. Sangla, I. Martial, N. Aubry, et al., Appl. Phys. B, 97, 263 (2009).

    Article  ADS  Google Scholar 

  16. I. Martial, F. Balembois, J. Didierjean, and P. Georges, Opt. Express, 19, 11667 (2011).

    Article  ADS  Google Scholar 

  17. X. Délen, I. Martial, J. Didierjean, et al., Appl. Phys. B, 104, 1 (2011).

    Article  ADS  Google Scholar 

  18. A. M. Rodin, A. Aleknavicius, A. Michailovas, and A. S. Dementjev, Proc. SPIE, 9342, 934207 (2015).

  19. Y. Cai, B. Xu, Y. Zhang, et al., Photon. Res., 7, 162 (2019).

    Article  Google Scholar 

  20. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, Opt. Express, 20, 3832 (2012).

    Article  ADS  Google Scholar 

  21. I. Martial, F. Balembois, J. Didierjean, and P. Georges, Opt. Express, 19, 11667 (2011).

    Article  ADS  Google Scholar 

  22. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, Opt. Express, 20, 3832 (2012).

    Article  ADS  Google Scholar 

  23. J. Philippen, C. Guguschev, and D. Klimm, J. Cryst. Growth, 459, 17 (2017).

    Article  ADS  Google Scholar 

  24. Y. Ren and S. J. Zhang, Crys. Eng. Comm., 19, 767 (2017).

    Article  Google Scholar 

  25. B. Liu, M. P. Buric, B. T. Chorpending, et al., J. Lightwave Technol., 36, 5511 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaojun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, Z., Cong, Z. et al. 72.3 W 1064 nm Nd:YAG Single Crystal Fiber Laser and Intracavity Double Frequency Generation. J Russ Laser Res 41, 191–196 (2020). https://doi.org/10.1007/s10946-020-09864-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09864-y

Keywords

Navigation