Skip to main content

Advertisement

Log in

A Synchronously Self-Q-Switched and Self-Mode-Locked Fiber Laser with a Compound Resonator

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We demonstrate a synchronously self-Q-switched and self-mode-locked output pulse fiber laser based on a linear compound resonator and an LD cladding-pumped Yb-doped double-clad fiber. A maximum average output power of 332.1 mW is achieved. We observe that the maximum pulse envelope width is 8 μs, and the pulse energy is 3.83 μJ for the self-Q-switched pulse envelope. At the same time, the achieved maximum pulse width is 37.8 ns and pulse energy is 17.61 nJ for the self-mode-locked pulse. We observe the pulse splitting of the self-Q-switched envelope as well and achieve 14 subpulse packets for L1 = 180 mm. There are 75 self-mode-locked pulses in single packets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. S. Wang, Y. B. Guo, J. Li, et al., Chin. J. Lasers, 31, 1161 (2004) [in Chinese].

  2. X. J. Huang, Y. Z. Liu, Z. Sui, et al., J. Appl. Opt., 25, 16 (2004) [in Chinese].

  3. M. Bello-Jiménez, C. Cuadrado-Laborde, D. Sáez-Rodríguez, et al., Opt. Lett., 35, 3781 (2010).

    Article  ADS  Google Scholar 

  4. H. R. Chen, C.-Y. Tsai, H.-M. Cheng, et al., Opt. Express, 22, 12880 (2014).

    Article  ADS  Google Scholar 

  5. H. W. Mocker and R. J. Collins, Appl. Phys. Lett., 7, 270 (1965).

    Article  ADS  Google Scholar 

  6. M. H. Crowell, IEEE J. Quantum Electron., 1, 12 (1965).

    Article  ADS  Google Scholar 

  7. D. E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett., 16, 42 (1991).

    Article  ADS  Google Scholar 

  8. P. Myslinski, J. Chrostowski, J. A. K. Koningstein, and J. R. Simpson, Appl. Opt., 32, 286 (1993).

    Article  ADS  Google Scholar 

  9. M. Nakazawa, K. Suzuki, H. Kubota, and Y. Kimura, Opt. Lett.18, 613 (1993).

    Article  ADS  Google Scholar 

  10. Y. C. Hooi and H. B. Ahmad, Opt. Laser Technol., 28, 223 (1996).

    Article  ADS  Google Scholar 

  11. P. Glas, M. Naumann, A. Schirrmacher, et al., Opt. Commun., 161, 345 (1999).

    Article  ADS  Google Scholar 

  12. A. F. El-Sherif and T. A. King, Opt. Commun., 208, 381 (2002).

    Article  ADS  Google Scholar 

  13. F. Z. Qamar and T. A. King, J. Mod. Opt., 52, 1053 (2005).

    Article  ADS  Google Scholar 

  14. S. Kobtsev, S. Kukarin, and Y. Fedotov, Opt. Express, 16, 21936 (2008).

    Article  ADS  Google Scholar 

  15. M. Jung, J. Lee, M. Melkumov, et al., Laser Phys. Lett., 11, 125102 (2014).

    Article  ADS  Google Scholar 

  16. Y. Chen, G. B. Jiang, S. Q. Chen, et al., Opt. Express, 23, 12823 (2015).

    Article  ADS  Google Scholar 

  17. Z. P. Qin, G. Q. Xie, J. G. Ma, et al., Photon. Res., 6, 1074 (2018).

    Article  Google Scholar 

  18. Z. P. Qin, T. Hai, G. Q. Xie, et al., Opt. Express, 26, 8224 (2018).

    Article  ADS  Google Scholar 

  19. K. Zhang, M. Feng, Y. Y. Ren, et al., Photon. Res., 6, 893 (2018).

    Article  Google Scholar 

  20. C. X. Dou, W. Wen, J. L. Wang, et al., Photon. Res., 7, 283 (2019).

    Article  Google Scholar 

  21. A. H. H. Al-Masoodi, F. Ahmad, M. H. M. Ahmed, et al., IET Optoelectron., 12, 180 (2018).

    Article  Google Scholar 

  22. D. Haldar, J. Opt., 47, 96 (2018).

    Article  Google Scholar 

  23. D. D. Wu, C. J. Quan, Z. R. Guo, et al., J. Opt., 20, 085501 (2018).

    Article  ADS  Google Scholar 

  24. C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, et al., IEEE J. Quantum Electron., 37, 199 (2001).

    Article  ADS  Google Scholar 

  25. B. N. Upadhyaya, U. Chakravarty, A. Kuruvilla, et al., Opt. Express, 15, 11576 (2007).

    Article  ADS  Google Scholar 

  26. L. Q. Zhang, Z. Zhuo, Z. Y. Pan, et al., Laser Phys. Lett., 10, 105104 (2013).

    Article  ADS  Google Scholar 

  27. Z. Liu, Laser Phys., 23, 125105 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C. A Synchronously Self-Q-Switched and Self-Mode-Locked Fiber Laser with a Compound Resonator. J Russ Laser Res 41, 111–118 (2020). https://doi.org/10.1007/s10946-020-09856-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09856-y

Keywords

Navigation