Skip to main content
Log in

Characterisation of sensitivity of Colletotrichum gloeosporioides and Colletotrichum capsici, causing pepper anthracnose, to picoxystrobin

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

In 2014, 45 isolates of Colletotrichum spp. from Jinzhong City (Shanxi Province, China) that had never used Qo inhibitor (QoI)-type fungicides were characterised for sensitivity to picoxystrobin through growth inhibition tests with 100 μg/ml salicylhydroxamic acid. The isolates showed similar sensitivity, the EC50 values ranging from 0.021 to 0.197 μg/ml. Baseline sensitivity was distributed as unimodal curves with mean EC50 values of 0.108 ± 0.004 μg/ml for picoxystrobin. In field experiments in 2015 and 2016, 57 isolates of Colletotrichum spp. from four geographical regions of China revealed a mean EC50 value of 1.074 ± 3.287 μg/ml, which was 9.94-fold higher than the baseline sensitivity. In these four regions, Qo inhibitors provided control efficacy of about 85%. The isolates with low, moderate, and high resistance to the QoI fungicide picoxystrobin accounted for 3.5%, 7.0%, and 5.3% of all 57 isolates, respectively. However, during continuous asexual culturing of the resistant isolates on fungicide-free medium for ten generations, picoxystrobin sensitivity of low and moderate resistant isolates was restored. Moreover, spore production, mycelial growth rates, and spore germination rates of the resistant isolates did not differ significantly from those of the sensitive isolates. Genetic analysis for mutations showed that picoxystrobin resistance was associated with a point mutation from GGT to GCT at codon 143 in the CytB gene (G143A) in high resistant mutants of C. gloeosporioides, but no point mutation was detected in low and moderate resistant isolates. Positive cross-resistance between picoxystrobin and QoIs (azoxystrobin and kresoxim-methyl) was observed; no cross-resistance between picoxystrobin and other type fungicides (carbendazim and prochloraz) was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avila-Adame C, Köller W (2003) Characterization of spontaneous mutants of Magnaporthe grisea expressing stable resistance to the Qo-inhibiting fungicide azoxystrobin. Curr Genet 42:332–338

    Article  CAS  Google Scholar 

  • Bagi FF, Budakov DB, Bursic VP, Stojsin VB, Lazic SD, Vukovic SM (2016) Efficacy of azoxystrobin for the control of cucumber downy mildew (Pseudoperonospora cubensis) and fungicide residue analysis. Crop Prot 61:74–78

    Article  Google Scholar 

  • Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B (2002) The strobilurin fungicides. Pest Manag Sci 58:649–662

    Article  CAS  Google Scholar 

  • Cao XR, Che HY, Yang Y, Luo DQ (2015) Sensitivity of Colletotrichum spp. from Hevea brasiliensis to carbendazim and prochloraz in Hainan Province in China in 2014. Acta Phytopathol Sin 45:626–631

    Google Scholar 

  • Chin KM, Chavaillaz D, Kaesbohrer M, Staub T, Felsenstein FG (2001) Characterizing resistance risk of Erysiphe graminis f.sp. tritici to strobilurins. Crop Prot 20:87–96

    Article  CAS  Google Scholar 

  • De Miccolis Angelini RM, Rotolo C, Masiello M, Pollastro S, Ishii H, Faretra F (2012) Genetic analysis and molecular characterisation of laboratory and field mutants of Botryotinia fuckeliana (Botrytis cinerea) resistant to Qo I fungicides. Pest Manag Sci 68:1231–1240

    Article  Google Scholar 

  • Fernández-Ortuno D, Pérez-García A, López-Ruiz F, Romero D, de Vicente A, Torés JA (2006) Occurrence and distribution of resistance to QoI fungicides in populations of Podosphaera fusca in south central Spain. Eur J Plant Pathol 115:215–222

    Article  Google Scholar 

  • Fernández-Ortuno D, Tores JA, de Vicente A, Perez-Garcia A (2008) Mechanisms of resistance to qol fungicides in phytopathogenic fungi. Int Microbiol 11:1–9

    PubMed  Google Scholar 

  • Fernández-Ortuno D, Tores JA, Vicente A, Perez-Garcia A (2010) The QoI fungicides, the rise and fall of successful class of agricultural fungcides. Fungicides. INTECH, pp 203–220

  • Forcelini BB, Lee S, Oliveira MS, Peres NA (2018) Development of high-throughput SNP genotyping assays for rapid detection of strawberry Colletotrichum species and the G143A mutation. Phytopathology 108:1501–1508

    Article  CAS  Google Scholar 

  • Gisi U, Chin KM, Knapova G, Farber RK, Mohr U, Parisi S, Sierotzki H, Steinfeld U (2000) Recent developments in elucidating modes of resistance to phenylamide, DMI and strobilurin fungicides. Crop Prot (Guildford, Surrey) 19:863–872

    Article  CAS  Google Scholar 

  • Gisi U, Sierotzki H, Cook A, McCaffery A (2002) Mechanisms influencing the evolution of resistance to QoI inhibitor fungicides. Pest Manag Sci 58:859–867

    Article  CAS  Google Scholar 

  • Hadden JF, & Black LL (1989) Anthracnose of pepper caused by Colletotrichum spp. In: Proceedings of the symposium on integrated management practices: tomato and pepper production in the tropics, AVRDC, Tainan, Taiwan, pp 189–199

  • Han GX, Li Q, Sun FZ, Li HY (2009) Pathogen identification and resistance of Colletotrichum gloeosporioides to carbendazim and diethofencarb on strawberry in Hangzhou. J Zhejiang Agric Sci 1:1169–1172

    Google Scholar 

  • Kang BK, Min JY, Kim YS, Park SW, Nguyen VB, Kim HT (2005) Semi-selective medium for monitoring Colletotrichum acutatum causing pepper anthracnose in the field. Res Plant Dis 11:21–27

    Article  Google Scholar 

  • Kim BS, Park HK, Lee WS (1989) Resistance to anthracnose (Colletotrichum spp.) in pepper. In: Proceedings of the international symposium on integrated management practices: tomato and pepper production in the tropics, AVRDC, Tainan, Taiwan, pp 184–188

  • Kraiczy P, Haase U, Gencic S, Flindt S, Anke T, Brandt U, Jagow GV (1996) The molecular basis for the natural resistance of the cytochrome bc1 complex from strobilurin-producing basidiomycetes to centre Qo inhibitors. Eur J Biochem 235:54–63

    Article  CAS  Google Scholar 

  • Krämer et al (2007) Modern crop protection compounds, part II fungicide, vol 3. Wiley, New York, pp 420–426, 438–442

  • Lee J, Do JW, Yoon JB (2011) Development of STS markers linked to major QTLs for resistance to the pepper anthracnose caused by Colletotrichum acutatum and C. capsici. Hortic Environ Biotechnol 52:596–601

    Article  CAS  Google Scholar 

  • Lu XH, Zhu SS, Bi Y, Liu XL, Hao JJ (2010) Baseline sensitivity and resistance-risk assessment of Phytophthora capsici to iprovalicarb. Phytopathology 100:1162–1168

    Article  CAS  Google Scholar 

  • Ma ZH, Michailides TJ (2005) Advances in understanding molecular mechanisms of fungicide Resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot 24:853–863

    Article  CAS  Google Scholar 

  • Manadhar JB, Hartman GL, Wang TC (1995) Anthracnose development on pepper fruits inoculated with Colletotrichum gloeosporioides. Plant Dis 79:380–383

    Article  Google Scholar 

  • Markoglou AN, Malandrakis AA, Vitoratos AG, Ziogas BN (2006) Characterization of laboratory mutants of Botrytis cinerea resistant to QoI fungicides. Eur J Plant Pathol 115:149–162

    Article  CAS  Google Scholar 

  • Mavroeidi VI, Shaw MW (2005) Sensitivity distributions and cross-resistance patterns of Mycosphaerella graminicola to fluquinconazole, prochloraz and zaoxystrobin over a period of 9 years. Crop Prot 24:259–266

    Article  CAS  Google Scholar 

  • Maymon M, Zveibil A, Pivonia S (2006) Identification and characterization of benomyl-resistant and -sensitive populations of Colletotrichum gloeosporioides from statice (Limonium spp.). Phytopathology 96:542–548

    Article  CAS  Google Scholar 

  • McCartney C, Mercer PC, Cooke LR, Fraaije BA (2006) Effects of a strobilurin-based spray programme on disease control, green leaf area, yield and development of fungicide-resistance in Mycosphaerella graminicola in Northern Ireland. Crop Prot 26:1272–1280

    Article  Google Scholar 

  • Miessner S, Stammler G (2010) Monilinia laxa, M. fructigena and M. fructicola: risk estimation of resistance to QoI fungicides and identification of species with cytochrome b gene sequences. J Plant Dis Prot 117:162–167

    Article  CAS  Google Scholar 

  • Montri P, Taylor PWJ, Mongkolporn O (2009) Pathotypes of Colletotrichum capsici, the causal agent of chili anthracnose, in Thailand. Plant Dis 93:17–20

    Article  CAS  Google Scholar 

  • Murray HG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res 8:4321–4325

    Article  CAS  Google Scholar 

  • Pakdeevaraporn P, Wasee S, Taylor PWJ, Mongkolporn O (2005) Inheritance of resistance to anthracnose caused by Colletotrichum capsici in Capsicum. Plant Breed 124:206–208

    Article  Google Scholar 

  • Pang ZL, Shao JP, Chen L, Lu XH, Hu J, Qin ZH, Liu XL (2013) Resistance to the novel fungicide pyrimorph in Phytophthora capsici: risk assessment and detection of point mutations in CesA3 that confer resistance. PLoS ONE 8:e56513

    Article  CAS  Google Scholar 

  • Pasche JS, Piche LM, Gudmestad NC (2005) Effect of the F129L mutation in Alternaria solanion fungicides affecting mitochondrial respiration. Plant Dis 89:269–278

    Article  CAS  Google Scholar 

  • Rebollar-Alviter A, Madden LV, Jeffers SN, Ellis AA (2007) Baseline and differential sensitivity to two Qo I fungicides among isolates of Phytophthora cactorum that cause leather rot and crown rot on strawberry. Plant Dis 91:1625–1637

    Article  CAS  Google Scholar 

  • Sanders GM, Korsten L, Wehner FC (2000) Survey of fungicide sensitivity in Colletotrichum gloeosporioides from different avocado and mango production areas in South Africa. Eur J Plant Pathol 106:745–752

    Article  CAS  Google Scholar 

  • Siah A, Deweer C, Morand E, Reignault Ph, Halama P (2010) Azoxystrobin resistance of French Mycosphaerella graminicola strains assessed by four in vitro bioassays and by screening of G143A substitution. Crop Prot 29:737–743

    Article  CAS  Google Scholar 

  • Than PP, Jeewon R, Hyde KD, Pongsupasamit S, Mongkolporn O, Taylor PWJ (2008) Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chilli (Capsicum spp.) in Thailand. Plant Pathol 57:562–572

    Article  Google Scholar 

  • Torriani SFF, Linde CC, McDonald BA (2009) Sequence conservation in the mitochondrial cytochrome b gene and lack of G143A QoI resistance allele in a global sample of Rhynchosporium secalis. Aust Plant Pathol 38:202–207

    Article  CAS  Google Scholar 

  • Ye J, Zhang CQ (2012) Detection of sensitivity of grape anthracnose to thiophanate methyl, tebuconazole and kresoxim-methyl. Chin J Pestic Sci 14:111–114

    CAS  Google Scholar 

  • Zhang CQ, Liu YH, Ma XY, Feng Z, Ma ZH (2009) Characterization of sensitivity of Rhizoctonia solani, causing rice sheath blight, to mepronil and boscalid. Crop Prot 28:381–386

    Article  Google Scholar 

  • Zhao XJ, Ren L, Yin H, Zhou JB, Han JC, Luo Y (2013) Sensitivity of Pseudoperonospora cubensis to Metalaxyl, Dimethomorph and Fosetyl-aluminium in Shanxi of China. Crop Prot 43:38–44

    Article  CAS  Google Scholar 

  • Zheng D, Olaya G, Köller W (2000) Characterization of laboratory mutants of Venturia inaequalis resistant to strobilurin-related fungicide kresoxim-methyl. Curr Genet 38:148–155

    Article  CAS  Google Scholar 

  • Zhou YX, Chen L, Hu J, Liu PF, Zhang Y, Meng QX, Li B, Si NG, Liu CL, Liu XL (2016) Baseline sensitivity of natural population and resistance risk of Peronophythora litchii to four novel QoI fungicides. Eur J Plant Pathol 146:71–83

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Applied Basic Research Foundation of Shanxi Province (Grant No. 201801D121244) and the Key Research and Development Projects of Shanxi Province (Grant No. 201803D221005-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. J. Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, L., Wang, S.F., Shi, X.J. et al. Characterisation of sensitivity of Colletotrichum gloeosporioides and Colletotrichum capsici, causing pepper anthracnose, to picoxystrobin. J Plant Dis Prot 127, 657–666 (2020). https://doi.org/10.1007/s41348-020-00316-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-020-00316-y

Keywords

Navigation