Skip to main content
Log in

First report on DNA content of three species of Amorphophallus

  • Research Note
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The Amorphophallus genus is a perennial herb which belongs to the family Araceae. There are more than 170 species in this genus, which is widely distributed in tropical and subtropical areas. As a kind of food and medicine Amorphophallus has been used for more than 2000 years in China. Because of the high content of konjac glucomannan (KGM) and dietary fiber, it has attracted more attention worldwide. In this article, the DNA contents of A. konjac, A. albus and A. bulbifer in China, A. albus, A. paeoniifolius and A. muelleri in Indonesia were estimated by using flow cytometry. In the samples of China, the DNA contents were 12.95 ± 0.73 pg/2C in A. konjac, 10.51 ± 0.05 pg/2C in A. albus and 17.61 pg/2C in A. bulbifer, and for Indonesia, 14.16 ± 0.48 pg/2C in A. albus (flowering), 8.49 ± 0.2 pg/2C in A. paeoniifolius and 17.84 ± 1.46 pg/2C in A. muelleri were used. Interspecific variation was found significantly (P < 0.01), suggesting that DNA content might be a parameter that can be used to differentiate the species. Intraspecific variation has also been found significantly (P < 0.01), whether in the same region or between two regions. As far as we know, this is the first report on genome size estimation of the A. konjac, A. albus and A. muelleri using flow cytometry. Understanding the genome size of Amorphophallus species will help to sequence the genome and analyse the genetic diversity, evolutionary relationship and geographical variation pattern of Amorphophallus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

References

  • Baack E. J., Whitney K. D. and Rieseberg L. H. 2005 Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytol. 167, 623–630.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Behera S. S. and Ray R. C. 2016 Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. Int. J. Biol. Macromol. 92, 942–956.

    CAS  PubMed  Google Scholar 

  • Bennett M. D. 1972 Nuclear DNA content and minimum generation time in herbaceous plants. Proc. R. Soc. London, Ser. B. 181, 109–135.

    CAS  Google Scholar 

  • Bennett M. D. 1976 DNA amount, latitude, and crop plant distribution. Environ. Exp. Bot. 16, 93–108.

    CAS  Google Scholar 

  • Bennett M. D. and Leitch I. J. 1995 Nuclear DNA Amounts in Angiosperms. Ann. Bot. 76, 113–176.

    CAS  Google Scholar 

  • Bennett M. D. and Leitch I. J. 2005 Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann. Bot. 95, 45–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bottini M. 2000 Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW patagonian species of Berberis L. (Berberidaceae). Ann. Bot. 86, 565–573.

    CAS  Google Scholar 

  • Broderick S. R., Stevens M. R., Geary B., Love S. L., Jellen E. N., Dockter R. B. et al. 2011 A survey of Penstemon’s genome size. Genome 54, 160–173.

    PubMed  Google Scholar 

  • Chauhan K. P. S. and Brandham P. E. 1985 Chromosome and DNA variation in Amorphophallus (Araceae). Kew Bull. 40, 745–758.

    Google Scholar 

  • Caperta A. D., Conceição Sofia I. R., Róis Ana S., Loureiro João and Castro Sílvia 2018 Cytogenetic features of sexual and asexual Limonium taxa (Plumbaginaceae). Taxon 67, 1143–1152.

    Google Scholar 

  • Chen X., Yuan L. Q., Li L. J., Lv Y., Chen P. F. and Pan L. 2017 Suppression of gastric cancer by extract from the tuber of amorphophallus konjac via induction of apoptosis and autophagy. Oncol. Rep. 38, 1051–1058.

    CAS  PubMed  Google Scholar 

  • Chua M., Baldwin T. C., Hocking T. J. and Chan K. 2010 Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N.E.Br. J. Ethnopharmacol. 128, 268–278.

    PubMed  Google Scholar 

  • Creber H. M. C., Davies M. S., Francis D. and Walker H. D. 2006 Variation in DNA C value in natural populations of Dactylis glomerata L. New Phytol. 128, 555–561.

    Google Scholar 

  • Devaraj R. D., Reddy C. K. and Xu B. 2019 Health-promoting effects of konjac glucomannan and its practical applications: A critical review. Int. J. Biol. Macromol. 126, 273–281.

    CAS  PubMed  Google Scholar 

  • Diao Y., Teng C., Wu J., Xiang F., Gu Y. and Hu Z. 2006 Research progress of Amorphophallus. Anhui Agricul. Sci. Bull. 12, 137–139 (in Chinese).

    Google Scholar 

  • Diao Y., Yang C., Yan M., Zheng X., Jin S., Wang Y. and Hu Z. 2014 De novo transcriptome and small RNA analyses of two Amorphophallus species. PLoS One 9, e95428.

    PubMed  PubMed Central  Google Scholar 

  • Gao Y., Yin S., Yang H., Wu L. and Yan. Y. 2018 Genetic diversity and phylogenetic relationships of seven Amorphophallus species in southwestern China revealed by chloroplast DNA sequences. Mitochondrial DNA A DNA Mapp. Seq. Anal. 29, 679–1686.

    CAS  Google Scholar 

  • Gholave A. R., Pawar K. D., Yadav S. R., Bapat V. A. and Jadhav J. P. 2017 Reconstruction of molecular phylogeny of closely related Amorphophallus species of India using plastid DNA marker and fingerprinting approaches. Physiol. Mol. Biol. Plants 23, 155–167.

    CAS  PubMed  Google Scholar 

  • Greilhuber J. and Obermayer R. 1997 Genome size and maturity group in Glycine max (soybean). Heredity 78, 547–551.

    Google Scholar 

  • Grob G. B. J., Gravendeel B. and Eurlings M. C. M. 2004 Potential phylogenetic utility of the nuclear FLORICAULA/LEAFY second intron: comparison with three chloroplast DNA regions in Amorphophallus (Araceae). Mol. Phylogenet. Evol. 30, 13–23.

    CAS  PubMed  Google Scholar 

  • Guo S, Chen G. and Mao L.-H. 2008 Statistical analysis of the relationship between DNA C-value and angiosperm invasiveness: a case study of 539 angiosperms in China. Acta Ecologica Sin. 28, 218–225 (in Chinese).

    Google Scholar 

  • Harmayani E., Aprilia V. and Marsono Y. 2014 Characterization of glucomannan from Amorphophallus oncophyllus and its prebiotic activity in vivo. Carbohydr. Polym. 112, 475–479.

    CAS  PubMed  Google Scholar 

  • Huang Q., Jin W., Ye S., Hu Y., Wang Y., Xu W. et al. 2016 Comparative studies of konjac flours extracted from Amorphophallus guripingensis and Amorphophallus rivirei: Based on chemical analysis and rheology. Food Hydrocolloid. 57, 209–216.

    CAS  Google Scholar 

  • Inceer H., Garnatje T., Hayirlioglu-Ayaz S., Pascual-Diaz J. P., Valles J. and Garcia S. 2018 A genome size and phylogenetic survey of Mediterranean Tripleurospermum and Matricaria (Anthemideae, Asteraceae). PLoS One 13, e0203762.

    PubMed  PubMed Central  Google Scholar 

  • Jaroslav D., Greilhuber J. and Suda J. 2007 Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2, 2233–2244.

    Google Scholar 

  • Jian W., Siu K. C. and Wu J. Y. 2015 Effects of pH and temperature on colloidal properties and molecular characteristics of Konjac glucomannan. Carbohydr. Polym. 134, 285–292.

    CAS  PubMed  Google Scholar 

  • Kite G. C. and Hetterscheid W. L. A. 2017 Phylogenetic trends in the evolution of inflorescence odours in Amorphophallus. Phytochemistry 142, 126–142.

    CAS  PubMed  Google Scholar 

  • Knight C. A. and David D. A. 2002 Variation in nuclear DNA content across environmental gradients: A quantile regression analysis. Ecol. Lett. 5, 66–76.

    Google Scholar 

  • Laurie D. A. and Bennett M. D. 1985 Nuclear DNA content in the genera Zea and orghum. Intergeneric, interspecific and intraspecific variation. Heredity 55, 307–313.

    Google Scholar 

  • Liu E., Yang C., Liu J., Jin S., Harijati N., Hu Z. et al. 2019 Comparative analysis of complete chloroplast genome sequences of four major Amorphophallus species. Sci. Rep. 9.

  • Lughadha E. N., Allkin B., Sally H., Harman K., Govaerts R., Brummitt N. et al. 2008 Towards Target 1 of the Global Strategy for Plant Conservation: a working list of all known plant species—progress and prospects. Taxon 57, 602–611.

    Google Scholar 

  • Mabuchi T., Kokubun H., Mii M., and Ando T. 2005 Nuclear DNA content in the genus Hepatica (Ranunculaceae). J. Plant Res. 118, 37–41.

    CAS  PubMed  Google Scholar 

  • Ni L. and Guo S. 2005 Review on relationship between invasiveness of plants and their DNA C-value. Acta Ecol. Sin. 2372–2381 (in Chinese).

  • Pan C., Gichira A. W. and Chen J. M. 2015 Genetic variation in wild populations of the tuber crop Amorphophallus konjac (Araceae) in central China as revealed by AFLP markers. Genet. Mol. Res. 14, 18753–18763.

    CAS  PubMed  Google Scholar 

  • Pati K., Zhang F. and Batley J. 2019 First report of genome size and ploidy of the underutilized leguminous tuber crop Yam Bean (Pachyrhizus erosus and P. tuberosus) by flow cytometry. Plant Genet. Resour. 1–4.

  • Pecinka A., Suchankova P., Lysak M. A., Travnicek B. and Dolezel J. 2006 Nuclear DNA content variation among Central European Koeleria taxa. Ann. Bot. 98, 117–122.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pellicer J., Hidalgo O., Dodsworth S. and Leitch I. J. 2018 Genome size diversity and its impact on the evolution of land plants. Genes (Basel). 9.

  • Price H. J., Chambers K. L. and Bachmann K. 1981 Genome size variation in diploid Microseris Bigelovii (Asteraceae). Bot. Gazette 142, 156–159.

    Google Scholar 

  • Rayburn A. L. and Auger J. A. 1990 Genome size variation in Zea mays ssp. mays adapted to different altitudes. Theo. Appl. Genet. 79, 470–474.

    CAS  Google Scholar 

  • Rees H. and Jones G. H. 1967 Chromosome evolution in Lolium. Heredity 22, 1–18.

    Google Scholar 

  • Sheng J., Hu X., Zeng X., Li Y., Zhou F., Hu Z. et al. 2016 Nuclear DNA content in Miscanthus sp. and the geographical variation pattern in Miscanthus lutarioriparius. Sci. Rep. 6, 34342.

  • Sisko M. 2003 Genome size analysis in the genus Cucurbita and its use for determination of interspecific hybrids obtained using the embryo-rescue technique. Plant Sci. 165, 663–669.

    CAS  Google Scholar 

  • Smarda P. and Bures P. 2006 Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Ann. Bot. 98, 665–678.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Temsch E. M. and Greilhuber J. 2000 Genome size variation in Arachis hypogaea and A. monticola re-evaluated. Genome 43, 449–451.

    CAS  PubMed  Google Scholar 

  • Tester R. F. and Al-Ghazzewi F. H. 2016 Beneficial health characteristics of native and hydrolysed konjac (Amorphophallus konjac) glucomannan. J. Sci. Food Agric. 96, 3283–3291.

    CAS  PubMed  Google Scholar 

  • Vesely P., Bures P. and Smarda P. 2013 Nutrient reserves may allow for genome size increase: evidence from comparison of geophytes and their sister non-geophytic relatives. Ann. Bot. 112, 1193–1200.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K. and Zhang S. 2016 Research progress and Prospect of Amorphophallus albus. South China Agric. 10, 60–64 (in Chinese).

    CAS  Google Scholar 

  • Wang K., Gao S., Shen C., Liu J., Li S., Chen J. et al. 2018 Preparation of cationic konjac glucomannan in NaOH/urea aqueous solution. Carbohydr. Polym. 181, 736–743.

    CAS  PubMed  Google Scholar 

  • Yan X., Meng W., Wu F., Xu A., Chen S. and Huang S 2016 The nuclear DNA content and genetic diversity of Lampetra morii. PLoS One 11, e0157494.

    PubMed  PubMed Central  Google Scholar 

  • Yi N., Zhang S., Wang Z. and Niu P. 2005 Amorphophallus resources in China. Southwest Horticul. 2, 26–28 (in Chinese).

    Google Scholar 

  • Zalewski B. M., Chmielewska A. and Szajewska H. 2015 The effect of glucomannan on body weight in overweight or obese children and adults: a systematic review of randomized controlled trials. Nutrition 31, 437–442.

    CAS  PubMed  Google Scholar 

  • Zhang C., Chen J. D. and Yang F. Q. 2014 Konjac glucomannan, a promising polysaccharide for OCDDS. Carbohydr. Polym. 104, 175–181.

    CAS  PubMed  Google Scholar 

  • Zhang L., Cao B. and Bai C. 2013 New reports of nuclear DNA content for 66 traditional Chinese medicinal plant taxa in China. Caryologia 66, 375–383.

    Google Scholar 

  • Zhu F. 2018 Modifications of konjac glucomannan for diverse applications. Food Chem. 256, 419–426.

    CAS  PubMed  Google Scholar 

  • Zonneveld B. J., Leitch I. J and Bennett M. D. 2005 First nuclear DNA amounts in more than 300 angiosperms. Ann. Bot. 96, 229–244.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Science and Technology Supporting Programme (No. 2011BAD33B03), the Fundamental Research Funds for the Central Universities (No. 2042016kf1106) and Philanthropic Project of Scientific Research of Hubei (No. 2012DBA11001). Thanks to Li Ye and Sheng Jiajing for their help in the experiment process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZHONGLI HU.

Additional information

Corresponding editor: Manoj Prasad

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ZHAO, C., HARIJATI, N., LIU, E. et al. First report on DNA content of three species of Amorphophallus. J Genet 99, 36 (2020). https://doi.org/10.1007/s12041-020-01199-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-020-01199-6

Keywords

Navigation