Skip to main content
Log in

CG/CA genotypes represent novel markers in the NPHS2 gene region associated with nephrotic syndrome

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Nephrotic syndrome (NS) is considered as a primary disease of the kidney that represents a heterogeneous group of glomerular disorders occurring mainly in children. It is generally divided into steroid-sensitive and steroid-resistant forms, depending upon the patient’s response to steroid therapy. Among the genes involved, the NPHS2 gene has been reported as the causative gene in steroid resistant form of nephrotic syndrome. In the present study, heterozygosity rate, allelic frequency and linkage of rs2274625 and rs3829795 markers were investigated in the NPHS2 gene region. To determine the SNP alleles, tetra-primer ARMS PCR was used. After genotyping rs2274625 and rs3829795 polymorphic markers in 120 unrelated individuals and nine trios families, the data were analysed using various computer programs such as UCSC Genome Browser, dbSNP and SNPper. Based on the statistical analysis of the results, for rs2274625 marker, allele frequency for C and T alleles was 97% and 3%, respectively. For rs3829795 marker allele frequency for G and A alleles was 55% and 45%, respectively. The values of heterozygosity index for the examined markers were 5% for rs2274625 and 45/8% for rs3829795. Consequently, two informative haplotypes, CG/CA, were identified in the NPHS2 gene region through combination of these two markers. These haplotypes can serve as appropriate tools for the identification of heterozygous carriers and linkage analysis of nephrotic syndrome disease in the Iranian families with an affected child.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Amirmahani F., Motovali-Bashi M. and Samani Z. G. 2017 Association scrutiny between the miRNA 148a/152 polymorphisms and risk of breast cancer in Isfahan population. Health Biotechnol. Biopharma 1, 50–60.

    Google Scholar 

  • Baylarov R., Baylarova R., Berdeli A., Bayramov R. and Haziyev E. 2019 NPHS2 gene sequencing results in children of the Azerbaijani population with different types of nephrotic syndrome caused by chronic glomerulonephritis. Bratisl. Lek. Listy 120, 102–105.

    CAS  PubMed  Google Scholar 

  • Benoit G., Machuca E. and Antignac C. 2010 Hereditary nephrotic syndrome: a systematic approach for genetic testing and a review of associated podocyte gene mutations. Pediatr. Nephrol. 25, 1621–1632.

    Article  Google Scholar 

  • Bullich G., Trujillano D., Santín S., Ossowski S., Mendizábal S., Fraga G. et al. 2015 Targeted next-generation sequencing in steroid-resistant nephrotic syndrome: mutations in multiple glomerular genes may influence disease severity. Eur. J. Hum. Genet. 23, 1192.

    Article  CAS  Google Scholar 

  • Caridi G., Perfumo F. and Ghiggeri G. M. 2005 NPHS2 (Podocin) mutations in nephrotic syndrome. Clinical spectrum and fine mechanisms. Pediatr. Res. 57, 54R.

  • Choi Y. W., Kim Y. G., Song M.-Y., Moon J.-Y., Jeong K.-H., Lee T.-W. et al. 2017 Potential urine proteomics biomarkers for primary nephrotic syndrome. Clin. Proteom. 14, 18.

    Article  Google Scholar 

  • Crawford D. C. and Nickerson D. A. 2005 Definition and clinical importance of haplotypes. Annu. Rev. Med. 56, 303–320.

    Article  CAS  Google Scholar 

  • Dong L., Pietsch S., Tan Z., Perner B., Sierig R., Kruspe D. et al. 2015 Integration of cistromic and transcriptomic analyses identifies Nphs2, Mafb, and Magi2 as Wilms’ tumor 1 target genes in podocyte differentiation and maintenance. J. Am. Soc. Nephrol. 26, 2118–2128.

    Article  CAS  Google Scholar 

  • Ebrahimi N. and Vallian Borujeni S. 2016 Analysis of genetic variation of rs1542705 marker in SMPD1 gene region as an informative marker for molecular diagnosis of Niemann-Pick disease in Isfahan population. J. Arak. Uni. Med. Sci. 19, 1–10.

    Google Scholar 

  • Ebrahimi N. and Vallian Borujeni S. 2017 Analysis of allele frequency and genotyping of rs67992843 marker in SMPD1 gene region associated with Niemann Pick disease in Isfahan population. SJIMU 25,151–160.

    Article  Google Scholar 

  • Fazeli Z. and Vallian S. 2009 Estimation haplotype frequency of Bgl II/Eco RI/VNTR markers at the PAH gene region in Iranian population. Int. J. Hum. Genet. 9, 115–121.

    Article  CAS  Google Scholar 

  • Fazeli Z. and Vallian S. 2013 Molecular phylogenetic study of the Iranians based on polymorphic markers. Gene 512, 123–126.

    Article  CAS  Google Scholar 

  • Franceschini N., North K. E., Kopp J. B., Mckenzie L. and Winkler C. 2006 NPHS2 gene, nephrotic syndrome and focal segmental glomerulosclerosis: a HuGE review. Genet. Med. 8, 63.

    Article  CAS  Google Scholar 

  • Gbadegesin R., Hinkes B., Vlangos C., Mucha B., Liu J., Hopcian J. et al. 2007 Mutational analysis of NPHS2 and WT1 in frequently relapsing and steroid-dependent nephrotic syndrome. Pediatr. Nephrol. 22, 509–513.

    Article  Google Scholar 

  • Greka A. and Mundel P. 2012 Cell biology and pathology of podocytes. Annu. Rev. Physiol. 74, 299–323.

    Article  CAS  Google Scholar 

  • Haghighatnia A., Vallian S., Mowla J. and Fazeli Z. 2012 Genetic diversity and balancing selection within the human phenylalanine hydroxylase (PAH) gene region in Iranian population. Iran J. Public Health 41, 97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jamalvandi M., Motovali-bashi M., Amirmahani F., Darvishi P. and Goharrizi K. J. 2018 Association of T/A polymorphism in miR-1302 binding site in CGA gene with male infertility in Isfahan population. Mol. Biol. Rep. 45, 413–417.

    Article  CAS  Google Scholar 

  • Jazaeri A., Karimi Moghadam A. and Vallian Borujeni S. 2016 Evaluating the association between Rs1800624 in RAGE gene and multiple sclerosis in Isfahan population. SSJU 23, 923–931.

    Google Scholar 

  • Jones A. G. and Ardren W. R. 2003 Methods of parentage analysis in natural populations. Mol. Ecol. 12, 2511–2523.

    Article  CAS  Google Scholar 

  • Joshi B. B., Mistry K. N., Gang S., Koringa P. G. and Joshi C. G. 2017 Characterization of NPHS2 gene polymorphisms associated to steroid resistance nephrotic syndrome in Indian children. Gene 628,134–140.

    Article  CAS  Google Scholar 

  • Judson R., Stephens J. C. and Windemuth A. 2000 The predictive power of haplotypes in clinical response. Pharmagenomics 1, 15–26.

    Article  CAS  Google Scholar 

  • Kerjaschki D. 2001 Caught flat-footed: podocyte damage and the molecular bases of focal glomerulosclerosis. J. Clin. Invest. 108,1583–1587.

    Article  CAS  Google Scholar 

  • Kodner C. 2009 Nephrotic syndrome in adults: diagnosis and management. Am. Fam. Physician 80, 1129–1134.

    PubMed  Google Scholar 

  • Liu K. and Muse S. V. 2005 PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21, 2128–2129.

    Article  CAS  Google Scholar 

  • Männikkö M., Kestilä M., Lenkkeri U., Alakurtti H., Holmberg C., Leisti J. et al. 1997 Improved prenatal diagnosis of the congenital nephrotic syndrome of the Finnish type based on DNA analysis. Kidney Int. 51, 868–872.

    Article  Google Scholar 

  • McKenzie L. M., Hendrickson S. L., Briggs W. A., Dart R. A., Korbet S. M., Mokrzycki M. H. et al. 2007 NPHS2 variation in sporadic focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 18, 2987–2995.

    Article  CAS  Google Scholar 

  • Miller S., Dykes D. and Polesky H. 1988 A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16,1215.

    Article  CAS  Google Scholar 

  • Mishra O. P., Kakani N., Singh A. K., Narayan G., Abhinay A., Prasad R. et al. 2014 NPHS2 R229Q polymorphism in steroid resistant nephrotic syndrome: is it responsive to immunosuppressive therapy? J. Trop. Pediatr. 60, 231–237.

    Article  Google Scholar 

  • Nadeali Z., Karimi A. and Vallian-Borujeni S. 2014 Analysis of genetic variation of rs4148326 marker located in UGT1A1 gene region: an informative marker for molecular diagnosis of Crigler-Najjar syndrome. Iranian J. Basic Med. Sci. 20, 880–885.

    Google Scholar 

  • Paranjape J. 2018 Diet in nephrotic syndrome. J. Renal. Nutr. Metab. 4, 80–81.

    Article  Google Scholar 

  • Ranganathan S. 2016 Pathology of podocytopathies causing nephrotic syndrome in children. Front Pediatr. 4, 32.

    Article  Google Scholar 

  • Raymond M. 1995 GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86,248–249.

    Article  Google Scholar 

  • Reiser J. and Altintas M. M. 2016 Podocytes. F1000Res 5.

  • Ruf R. G., Schultheiss M., Lichtenberger A., Karle S. M., Zalewski I., Mucha B. et al. 2004 Prevalence of WT1 mutations in a large cohort of patients with steroid-resistant and steroid-sensitive nephrotic syndrome. Kidney Int. 66, 564–570.

    Article  CAS  Google Scholar 

  • Sharif B. and Barua M. 2018 Advances in molecular diagnosis and therapeutics in nephrotic syndrome and focal and segmental glomerulosclerosis. Curr. Opin. Nephrol. Hypertens 27,194–200.

    Article  CAS  Google Scholar 

  • Shin J. I., Kronbichler A., Oh J. and Meijers B. 2018 Nephrotic syndrome: genetics, mechanism, and therapies. Biomed Res. 2018, article ID 6215946.

  • Thomas M. M., Abdel-Hamid M. S., Mahfouz N. N. and Ghobrial E. E. 2018 Genetic mutation in Egyptian children with steroid-resistant nephrotic syndrome. J. Formos Med. Assoc. 117, 48–53.

    Article  CAS  Google Scholar 

  • Tory K., Menyhárd D. K., Woerner S., Nevo F., Gribouval O., Kerti A. et al. 2014 Mutation-dependent recessive inheritance of NPHS2-associated steroid-resistant nephrotic syndrome. Nat. Genet. 46, 299.

    Article  CAS  Google Scholar 

  • Wang F., Zhang Y., Mao J., Yu Z., Yi Z., Yu L. et al. 2017 Spectrum of mutations in Chinese children with steroid-resistant nephrotic syndrome. Pediatr. Nephrol. 32, 1181–1192.

    Article  Google Scholar 

  • Yang J., Cai L., Huang H., Liu B. and Wu Q. 2012 Genetic variations and haplotype diversity of the UGT1 gene cluster in the Chinese population. PLoS One 7, e33988.

    Article  CAS  Google Scholar 

  • Ye S., Dhillon S., Ke X., Collins A. R. and Day I. N. 2001 An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res. 29, e88–e88.

    Article  CAS  Google Scholar 

  • Zhang J., Chen H., Kornreich R. and Yu C. 2019 Prenatal diagnosis of Tay-Sachs disease. In Prenatal diagnosis, pp. 233–250. Springer.

  • Zhao H., Nettleton D., Soller M. and Dekkers J. 2005 Evaluation of linkage disequilibrium measures between multi-allelic markers as predictors of linkage disequilibrium between markers and QTL. Genet. Res. 86, 77–87.

    Article  CAS  Google Scholar 

  • Zhao H., Nettleton D. and Dekkers J. C. 2007 Evaluation of linkage disequilibrium measures between multi-allelic markers as predictors of linkage disequilibrium between single nucleotide polymorphisms. Genet. Res. 89, 1–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Department of Research of University of Isfahan through an Internal Postgraduate Fund (pajoohaneh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadeq Vallian.

Additional information

Corresponding editor: Indrajit Nanda

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamgordani, L.E., Ebrahimi, N., Amirmahani, F. et al. CG/CA genotypes represent novel markers in the NPHS2 gene region associated with nephrotic syndrome. J Genet 99, 33 (2020). https://doi.org/10.1007/s12041-020-1188-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-020-1188-9

Keywords

Navigation