Skip to main content
Log in

Molecular phylogeny and evolution of Pulmonata (Mollusca: Gastropoda) on the basis of mitochondrial (16S, COI) and nuclear markers (18S, 28S): an overview

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The phylogenetic relationships among the major groups of Pulmonata were studied by the information derived from a concatenated dataset consisting of mitochondrial (16S and COI) and nuclear (18S and 28S) markers. Heterobranchia are recovered as monophyletic. Euthyneura as paraphyletic due to the emergence of taxa from Opisthobranchia and lower Heterobranchia. The major groups of Pulmonata, namely Stylommatophora, Veronicellidae, Onchidiidae, Otinoidea, Siphonarioidea and Hygrophila are recovered as monophyletic. Monophyly of Basommatophora was not confirmed due to the variable position of Siphonarioidea and Amphiboloidea. Evolutionary divergence times for different taxa were also estimated using a relaxed molecular clock method in Bayesian evolutionary analysis by sampling trees (BEAST). The common ancestor of Heterobranchia and Caenogastropoda was originated in the Silurian period and the common ancestors of Euthyneura and Pulmonata were originated in the Carboniferous and lower Triassic periods, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Ayyagari V. S., Naravula J. and Sreerama K. 2017 Optimization of the isolation procedure of genomic DNA from a mucus laden pulmonate gastropod, Achatina fulica. Natl. Acad. Sci. Lett. 40, 109–112.

    CAS  Google Scholar 

  • Bandel K. 1991 Gastropods from brackish and fresh water of the Jurassic - Cretaceous transition (a systematic reevaluation). Berl. Geowis. Abh. A. 134, 9–55.

    Google Scholar 

  • Bandel K. 1997 Higher classification and pattern of evolution of the Gastropoda. Courier Forschungsinstitut Senck. 201, 57–81.

    Google Scholar 

  • Bandel K. and Riedel F. 1994 The late Cretaceous gastropod fauna from Ajka (Bakony Mountains, Hungary): a revision. Ann. Naturhist. Mus. Wien. 96A. 1–61.

    Google Scholar 

  • Bandel K. and Heidelberger D. 2002 A devonian member of the subclass Heterostropha (Gastropoda) with valvatoid shell shape. N. Jb. Geol. Paläont. 9, 533–550.

    Google Scholar 

  • Bouchet P. and Rocroi J. P. 2005 Classification and nomenclator of Gastropod families. Malacologia 47, 1–397.

    Google Scholar 

  • Brown W. M., George M. Jr and Wilson A. C. 1979 Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 76, 1967–1971.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castresana J. 2000 Selection of conserved blocks from multiple alignments for their use in phylogenetic analyses. Mol. Biol. Evol. 17, 540–552.

    CAS  PubMed  Google Scholar 

  • Correa A. C., Escobar J. S., Durand P., Renaud F., David P., Jarne P. et al. 2010 Bridging gaps in the molecular phylogeny of the Lymnaeidae (Gastropoda: Pulmonata), vectors of Fascioliasis. BMC Evol. Biol. 10, 381.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darriba D., Taboada G. L., Doallo R. and Posada D. 2012 jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dayrat B. 2009 Review of the current knowlegde of the systematic of Onchidiidae (Mollusca: Gastropoda: Pulmonata) with a checklist of nominal species. Zootaxa 2068, 1–26.

    Google Scholar 

  • Dayrat B. and Tillier S. 2002 Evolutionary relationships of euthyneuran gastropods (Mollusca): a cladistic re-evaluation of morphological characters. Zool. J. Linnean Soc. 135, 403–470.

    Google Scholar 

  • Dayrat B., Conrad M., Balayan S., White T. R., Albrecht C., Golding R. et al. 2011 Phylogenetic relationships and evolution of pulmonate gastropods (Mollusca): new insights from increased taxon sampling. Mol. Phylogenet. Evol. 59, 425–437.

    PubMed  Google Scholar 

  • Dinapoli A. 2009 Phylogeny and evolution of the Heterobranchia (Mollusca, Gastropoda). Ph.D Thesis, Goethe-University of Frankfurt am Main, Germany.

  • Dinapoli A. and Klussmann-Kolb A. 2010 The long way to diversity—phylogeny and evolution of the Heterobranchia (Mollusca: Gastropoda). Mol. Phylogenet. Evol. 55, 60–76.

    PubMed  Google Scholar 

  • Dinapoli A., Zinssmeister C. and Klussmann-Kolb A. 2011 New insights into the phylogeny of the Pyramidellidae (Gastropoda). J. Molluscan Stud. 77, 1–7.

    Google Scholar 

  • Dinapoli A., Tamer C., Franssen S., Naduvilezhath L. and Klussmann-Kolb A. 2006 Utility of H3-gene gene sequence for phylogenetic reconstruction—a case study of heterobranch Gastropoda. Bonn. Zool. Beitr. 55, 191–202.

    Google Scholar 

  • Drummond A. J., Ho S. Y. W., Phillips M. J. and Rambaut A. 2006 Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88.

    PubMed  PubMed Central  Google Scholar 

  • Edgar R. C. 2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Férussac J. B. L. 1819. Histoire Naturelle des Pulmonés sans Opercules. Arthus-Gertrand, Paris.

    Google Scholar 

  • Fryda J., Nützel A. and Wagner P. 2008 Paleozoic gastropoda. In Phylogeny and evolution of the Mollusca (ed F. W. Ponder and D. Lindberg), pp. 239–270. University of California Press, Berkeley.

    Google Scholar 

  • Gaitán-Espitia J. D., Nespolo R. F. and Opazo J. C. 2013 The complete mitochondrial genome of the land snail Cornu aspersum (Helicidae: Mollusca): intra-specific divergence of protein-coding genes and phylogenetic considerations within Euthyneura. PLoS One 8, e67299.

    PubMed  PubMed Central  Google Scholar 

  • Gernhard T. 2008 The conditioned reconstructed process. J. Theor. Biol. 253, 769–778.

    PubMed  Google Scholar 

  • Golding R. E. 2012 Molecular phylogenetic analysis of mudflat snails (Gastropoda: Euthyneura: Amphiboloidea) supports an Australasian centre of origin. Mol. Phylogenet. Evol. 63, 72–81.

    PubMed  Google Scholar 

  • Grande C., Templado J. and Zardoya R. 2008 Evolution of gastropod mitochondrial genome arrangements. BMC Evol. Biol. 8, 61.

    PubMed  PubMed Central  Google Scholar 

  • Grande C., Templado J., Cervera J. L. and Zardoya R. 2004a Molecular phylogeny of euthyneura (Mollusca: Gastropoda). Mol. Biol. Evol. 21, 303–313.

    CAS  PubMed  Google Scholar 

  • Grande C., Templado J., Cervera J. L. and Zardoya R. 2004b Phylogenetic relationships among Opisthobranchia (Mollusca: Gastropoda) based on mitochondrial cox 1, trnV, and rrnL genes. Mol. Phylogenet. Evol. 33, 378–388.

    CAS  PubMed  Google Scholar 

  • Haszprunar G. 1985 The Heterobranchia—a new concept of the phylogeny of the higher Gastropoda. Z. Zool. Syst. Evol. 23, 15–37.

    Google Scholar 

  • Haszprunar G. 1988 On the origin and evolution of major gastropod groups, with special reference to the Streptoneura. J. Molluscan Stud. 54, 367–441.

    Google Scholar 

  • Haszprunar G. and Huber G. 1990 On the central nervous system of Smeagolidae and Rhodopidae, two families questionably allied to the Gymnomorpha (Gastropoda, Euthyneura). J. Zool. 220, 185–199.

    Google Scholar 

  • Holznagel W. E., Colgan D. J. and Lydeard C. 2010 Pulmonate phylogeny based on 28S rRNA gene sequences: a framework for discussing habitat transitions and character transformation. Mol. Phylogenet. Evol. 57, 1017–1025.

    CAS  PubMed  Google Scholar 

  • Hubendick B. 1978 Chapter 1: systematics and comparative morphology of the Basommatophora. In Pulmonates: vol. 2A Systematics, Evolution and Ecology (ed. V. Fretter and J. F. Peake), pp. 1–47. Academic Press, London.

  • Jørgensen A., Kristensen T. K. and Stothard J. R. 2004 An investigation of the ‘‘Ancyloplanorbidae’’ (Gastropoda, Pulmonata, Hygrophila): preliminary evidence from DNA sequence data. Mol. Phylogenet. Evol. 32, 778–787.

    PubMed  Google Scholar 

  • Jörger K. M., Stöger I., Kano Y., Fukuda H., Knebelsberger T. and Schrödl M. 2010 On the origin of Acochlidia and other enigmatic euthyneuran gastropods, with implications for the systematics of Heterobranchia. BMC Evol. Biol. 10, 323.

    PubMed  PubMed Central  Google Scholar 

  • Kiel S. and Bandel K. 2001 About Heterostropha (Gastropoda) of the Campanian of Torallola, Spain. J. Czech Geol. Soc. 46, 319–334.

    Google Scholar 

  • Klussmann-Kolb A., Dinapoli A., Kunn K., Streit B. and Albrecht C. 2008 From sea to land and beyond—new insights into the evolution of euthyneuran Gastropoda (Mollusca). BMC Evol. Biol. 8, 57.

    PubMed  PubMed Central  Google Scholar 

  • Lajmi A., Bansal R., Giri V. and Karanth P. 2019 Phylogeny and biogeography of the endemic Hemidactylus geckos of the Indian subregion suggest multiple dispersals from Peninsular India to Sri Lanka. Zool. J. Linn. Soc. 186, 286–301.

    Google Scholar 

  • Letunic I. and Bork P. 2016 Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medina M., Lal S., Valles Y., Takaoka T. L., Dayrat B. A., Boore J. L. et al. 2011 Crawling through time: transition of snails to slugs dating back to the Paleozoic, based on mitochondrial phylogenomics. Mar. Genom. 4, 51–59.

    Google Scholar 

  • Morgan J. A. T., DeJong R. J., Jung Y., Khallaayoune K., Kock S., Mkoji G. M. et al. 2002 A phylogeny of planorbid snails, with implications for the evolution of Schistosoma parasites. Mol. Phylogenet. Evol. 25, 477–488.

    CAS  PubMed  Google Scholar 

  • Ponder W. F. and Lindberg D. R. 1997 Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zool. J. Linnean Soc. 119, 83–265.

    Google Scholar 

  • Rambaut A. 2012 FigTree v1.4.2. Available: http://tree.bio.ed.ac.uk/software/figtree/.

  • Rambaut A., Suchard M. A., Xie W. and Drummond A. J. 2014 Tracer v1.6. Available at http://beast.bio.ed.ac.uk/Tracer.

  • Razkin O., Gómez-Moliner B. J., Prieto C. E., Martínez-Ortí A, Arrébola J. R., Muñoz B. et al. 2015 Molecular phylogeny of the western Palaearctic Helicoidea (Gastropoda, Stylommatophora). Mol. Phylogenet. Evol. 83, 99–117.

    PubMed  Google Scholar 

  • Remigio E. A. 2002 Molecular phylogenetic relationships in the aquatic snail genus Lymnaea, the intermediate host of the causative agent of fascioliasis: insights from broader taxon sampling. Parasitol. Res. 88, 687–696.

    CAS  PubMed  Google Scholar 

  • Remigio E. A. and Blair D. 1997 Molecular systematics of the freshwater snail family Lymnaeidae (Pulmonata: Basommatophora) utilizing mitochondrial ribosomal DNA sequences. J. Molluscan Stud. 63, 173–185.

    Google Scholar 

  • Ronquist F., Teslenko M., Van der Mark P., Ayres D. L., Darling A., Höhna S. et al. 2012 MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542.

    PubMed  PubMed Central  Google Scholar 

  • Silvestro D. and Michalak I. 2012 RAXMLGUI: a graphical front-end for RAxML. Org. Divers. Evol. 12, 335–337.

    Google Scholar 

  • Sil M., Aravind N. A. and Karanth K. P. 2019 Into-India or out-of-India? Historical biogeography of freshwater gastropod genus Pila (Ampullariidae). bioRxiv 643882.

  • Sokolov E. P. 2000 An improved method for DNA isolation from mucopolysaccharide-rich Molluscan tissues. J. Molluscan Stud. 66, 573–575.

    Google Scholar 

  • Solem A. and Yochelson E. L. 1979 North American Paleozoic land snails, with a summary of other Paleozoic non-marine snails. US Geol. Surv. Prof. Pap. 1072, 1–42.

    Google Scholar 

  • Suchard M. A., Lemey P., Baele G., Ayres D. L., Drummond A. J. and Rambaut A. 2018 Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 Virus Evol. 4, vey016.

  • Sun B. N., Wei L. L., Shen H. D., Wu H. X. and Wang D. F. 2016 Phylogenetic analysis of euthyneuran gastropods from sea to land mainly based on comparative mitogenomic of four species of Onchidiidae (Mollusca: Gastropoda: Pulmonata). Mitochondrial DNA 27, 3075–3077.

    CAS  PubMed  Google Scholar 

  • Swofford D. L. 2002 PAUP* phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Tamura K., Stecher G., Peterson D., Filipski A. and Kumar S. 2013 MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thollesson M. 1999 Phylogenetic analysis of Euthyneura (Gastropoda) by means of the 16S rRNA gene: use of a ‘fast’ gene for ‘higher-level’ phylogenies. Proc. R. Soc. Lond. B Biol. Sci. 266, 75–83.

    Google Scholar 

  • Tillier S. 1984 Relationships of gymnomorph gastropods (Mollusca: gastropoda). Zool. J. Linnean Soc. 82, 345–362.

    Google Scholar 

  • Tracey S., Todd J. A. and Erwin D. H. 1993 Mollusca: Gastropoda. In The fossil record (ed. M. J. Benton), pp 131–167. Chapman & Hall, London.

    Google Scholar 

  • Vonnemann V., Schrodl M., Klussmann-Kolb A. and Wagele H. 2005 Reconstruction of the phylogeny of the Opisthobranchia (Mollusca: Gastropoda) by means of 18S and 28S rDNA gene sequences. J. Molluscan Stud. 71, 113–125.

    Google Scholar 

  • Wade C. M. and Mordan P. B. 2000 Evolution within the gastropod molluscs: using the ribosomal RNA gene-cluster as an indicator of phylogenetic relationships. J. Molluscan Stud. 66, 565–570.

    Google Scholar 

  • Wade C. M., Mordan P. B. and Naggs F. 2006 Evolutionary relationships among the Pulmonate land snails and slugs (Pulmonata, Stylommatophora). Biol. J. Linnean Soc. 87, 593–610.

    Google Scholar 

  • Xia X. 2013 DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol. Biol. Evol. 30, 1720–1728.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia X., Xie Z., Salemi M., Chen L. and Wang Y. 2003 An index of substitution saturation and its application. Mol. Phylogenet. Evol. 26, 1–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Science, Engineering and Research Board, Department of Science and Technology, Government of India (sanction order: SB/SO/AS-138/2012 dated 30-11-2013; sanctioned to Prof. S. Krupanidhi) and also supported by Prof. A. V. L. N. H. Paidi Raju and Mrs. A. Ganga Bhavani (parents of VSA). We acknowledge Drs Tulika Biswas and Amit K. Mukhopadhyay from Zoological Survey of India, Kolkata for identifying the gastropod taxa. Thanks are due to an anonymous reviewer for valuable comments on the earlier versions of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijaya Sai Ayyagari.

Additional information

Corresponding editor: H. A. Ranganath

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 823 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayyagari, V.S., Sreerama, K. Molecular phylogeny and evolution of Pulmonata (Mollusca: Gastropoda) on the basis of mitochondrial (16S, COI) and nuclear markers (18S, 28S): an overview. J Genet 99, 17 (2020). https://doi.org/10.1007/s12041-020-1177-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-020-1177-z

Keywords

Navigation