Skip to main content
Log in

Decision making tools for optimal material selection: A review

最佳材料选择的决策工具:综述

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The present work reviews different decision making tools (material comparing and choosing tools) used for selecting the best material considering different parameters. In this review work, the authors have tried to address the following important enquiries: 1) the engineering applications addressed by the different material choosing and ranking methods; 2) the predominantly used decision making tools addressing the optimal material selection for the engineering applications; 3) merits and demerits of decision making tools used; 4) the dominantly used criteria or objectives considered while selecting a suitable alternative material; 5) overview of DEA on material selection field. The authors have surveyed literatures from different regions of the globe and considered literatures since 1988. The present review not only stresses the importance of material selection in the early design stage of the product development but also aids the design and material engineers to apply different decision making tools systematically.

摘要

本文回顾了考虑不同参数的用于选择最佳材料的决策工具(材料比较和选择工具)。主要解决了 以下重要问题:1)不同材料选择和排序方法所涉及的工程应用; 2)解决工程应用最佳材料选择使用的 主要决策工具; 3)所使用的决策工具的优缺点; 4)在选择合适的替代材料时考虑的主要使用标准或目 标; 5)关于材料选择领域的DEA 概述。本文研究了全球不同地区1988 年以来的文献, 不仅强调了材 料选择在产品开发早期设计阶段的重要性, 而且还有助于设计和材料工程师系统地应用不同的决策工 具。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MCDM:

Multi-criteria decision making

MODM:

Multi-objective decision making

MADM:

Multi-attribute decision making

TOPSIS:

Technique for order preference by similarity to ideal solution

ELECTRE:

Elimination and choice expressing the reality

PROMETHEE:

Preference ranking organization method for enrichment evaluations

AHP:

Analytical hierarchal process

SAW:

Simple additive weighting

VIKOR:

Vlse kriterijumska optimizacija kompromisno resenjè

GRA:

Grey relational analysis

COPRAS:

Complex proportional assessment

EVAMIX:

Evaluation of mixed data

PSI:

Preference selection index

ORESTE:

Organization, rangement et synthese de donnes relationnelles

OCRA:

Operation competitiveness rating analysis

ARAS:

Additive ratio assessment

ANP:

Analytic network process

MOORA:

Multi-optimization on the basis of ratio analysis

TODIM:

Tomada de decisao interativa multicriterio

LCA:

Life cycle analysis

GA:

Genetic algorithm

ANN:

Artificial neural networks GP Goal programming

UA:

Utility analysis

LA:

Linear assignment

COPRAS-G:

Grey-complex proportional assessment

References

  1. FARAG M M. Quantitative methods of materials selection [M]//Mechanical Engineers’ Handbook, 2006.

    Google Scholar 

  2. ROTH R, FIELD F, CLARK J. Materials selection and multi-attribute utility analysis [J]. Journal of Computer-Aided Materials Design, 1994, 1(3): 325–342.

    Article  Google Scholar 

  3. LJUNGBERG L Y. Materials selection and design for development of sustainable products [J]. Materials & Design, 2007, 28(2): 466–479.

    Article  Google Scholar 

  4. ZARANDI M H, MANSOUR S, HOSSEINIJOU S A, AVAZBEIGI M. A material selection methodology and expert system for sustainable product design [J]. The International Journal of Advanced Manufacturing Technology, 2011, 57(9-12): 885–903.

    Article  Google Scholar 

  5. CHINER M. Planning of expert systems for materials selection [J]. Materials & Design, 1988, 9(4): 195–203.

    Article  Google Scholar 

  6. FARAG M M. Materials and process selection for engineering design [M]. London, UK: CRC Press, Taylor and Francis Group, 2008.

    Google Scholar 

  7. ASHBY M F, BRECHET Y J, CEBON D, SALVO L. Selection strategies for materials and processes [J]. Materials & Design, 2004, 25(1): 51–67.

    Article  Google Scholar 

  8. JALHAM I S. Decision-making integrated information technology (IIT) approach for material selection [J]. International Journal of Computer Applications in Technology, 2006, 25(1): 65–71.

    Article  Google Scholar 

  9. van KESTEREN I E, KANDACHAR P V, STAPPERS P [J]. Activities in selecting materials by product designers [C]// Proceedings of the International Conference on Advanced Design and Manufacture. Nottingham: ADMEC, 2006: 321–328.

    Google Scholar 

  10. FARAG M M. Selection of materials and manufacturing processes for engineering design [M]. London: Prentice-Hall, 1990.

    Google Scholar 

  11. ASHBY M F. Material selection in mechanical design [M]. Cambridge, UK: Pergamon Press, 1992.

    Google Scholar 

  12. ASHBY M F. Materials selection charts [M]//ASM Metals Handbook, 2001.

    Google Scholar 

  13. HOLLOWAY L. Materials selection for optimal environmental impact in mechanical design [J]. Materials & Design, 1998, 19(4): 133–143.

    Article  Google Scholar 

  14. WEAVER P M, ASHBY M F, BURGESS S, SHIBAIKE N. Selection of materials to reduce environmental impact: A case study on refrigerator insulation [J]. Materials & Design, 1996, 17(1): 11–17.

    Article  Google Scholar 

  15. SEPE M P. Proposed enhancements to the short-term property chart for improved material selection decisions [C]// Annual Technical Conference. Society of Plastics Engineers Incorporated, 1996: 3176–3181.

    Google Scholar 

  16. ASHBY M F. Materials selection: Multiple constraints and compound objectives [M]// Computerization and Networking of Materials Databases. ASTM International, 1997.

    Google Scholar 

  17. ERMOLAEVA N S, KAVELINE K G, SPOORMAKER J L. Materials selection combined with optimal structural design: Concept and some results [J]. Materials & Design, 2002, 23(5): 459–470.

    Article  Google Scholar 

  18. SAPUAN S M, JACOB M S, MUSTAPHA F, ISMAIL N. A prototype knowledge-based system for material selection of ceramic matrix composites of automotive engine components [J]. Materials & Design, 2002, 23(8): 701–708.

    Article  Google Scholar 

  19. BULLINGER H J, WARSCHAT J, FISCHER D. Knowledge-based system for material selection for design with new materials [J]. Knowledge-Based Systems, 1991, 4(2): 95–102.

    Article  Google Scholar 

  20. SAPUAN S M, ABDALLA H S. A prototype knowledge-based system for the material selection of polymeric-based composites for automotive components [J]. Composites Part A: Applied Science and Manufacturing, 1998, 29(7): 731–742.

    Article  Google Scholar 

  21. ZHA X F. A web-based advisory system for process and material selection in concurrent product design for a manufacturing environment [J]. The International Journal of Advanced Manufacturing Technology, 2005, 25(3, 4): 233–243.

    Article  Google Scholar 

  22. KUMAR S, SINGH R. A short note on an intelligent system for selection of materials for progressive die components [J]. Journal of Materials Processing Technology, 2007, 182(1-3): 456–461.

    Article  Google Scholar 

  23. AMEN R, VOMACKA P. Case-based reasoning as a tool for materials selection [J]. Materials & Design, 2001, 22(5): 353–358.

    Article  Google Scholar 

  24. GOEL V, CHEN J. Application of expert network for material selection in engineering design [J]. Computers in Industry, 1996, 30(2): 87–101.

    Article  Google Scholar 

  25. LI X C, CHEN G, ZHU W X, WANG Y, ZHANG K H, WANG J M. Intelligent expert system used in gear material selection and its heat treatment [J]. Acta Metall Sin, 2004, 40(10): 1051–1054.

    Google Scholar 

  26. AMOIRALIS E I, GEORGILAKIS P S, GIOULEKAS A T. An artificial neural network for the selection of winding material in power transformers [C]// Hellenic Conference on Artificial Intelligence. Berlin, Heidelberg: Springer, 2006: 465–468.

    Google Scholar 

  27. BALAKRISHNA A, RAO D N, SRINIVAS J, SATISH P. Computer aided material selection processes in concurrent engineering using neural networks [J]. Journal of the Institution of Engineers (India): Mechanical Engineering Division, 2007, 88: 20–23.

    Google Scholar 

  28. DARGIE P P, PARMESHWAR K, WILSON W R. MAPS-1: Computer-aided design system for preliminary material and manufacturing process selection [J]. Journal of Mechanical Design, 1982, 104(1):126–136.

    Article  Google Scholar 

  29. LAI K, WILSON W R D. Computer-aided material selection and process planning [J]. Manufacturing Engineering Transactions, 1985: 505–508.

    Google Scholar 

  30. PECHT M, SAWYER T, DIETER G, PAN Y. Material selection program [C]// ASEE Annual Conference. Atlanta, GA, USA: ASEE, 1985: 635–637.

    Google Scholar 

  31. ULLMAN E, RYDEN L. Development of a national materials data base in Sweden [J]. Materials & Design, 1987, 8(6): 346–349.

    Article  Google Scholar 

  32. DARMODY M, CHADWICK G. Optimizing material selections for performance and supportability with an expert system [M]. Washington, DC, USA: IEEE, 1987.

    Google Scholar 

  33. CHEN R W, NAVIN-CHANDRA D, NAIR I, PRINZ F, WADEHRA I L. ImSelection-An approach for material selection that integrates mechanical design and life cycle environmental burdens [C]// Proceedings of the 1995 IEEE International Symposium in Electronics and the Environment. 1995: 68–74.

    Google Scholar 

  34. CEBON D, ASHBY M. Datasystems for optimal material selection [J]. Adv Mater Process, 2003, 161: 51–54.

    Google Scholar 

  35. KUMAR S, SINGH R. An intelligent system for modeling and material selection for progressive die components [J]. Key Engineering Materials, 2007, 344: 873–880.

    Article  Google Scholar 

  36. SAPUAN S M. A knowledge-based system for materials selection in mechanical engineering design [J]. Materials & Design, 2001, 22(8): 687–695.

    Article  Google Scholar 

  37. TRIANTAPHYLLOU E, MANN S H. Using the analytic hierarchy process for decision making in engineering applications: Some challenges [J]. International Journal of Industrial Engineering: Applications and Practice, 1995, 2(1): 35–44.

    Google Scholar 

  38. YOON K P, HWANG C L. Multiple attribute decision making: An introduction [M]. California: Sage publications, 1995.

    Book  Google Scholar 

  39. BENAYOUN R, ROY B, SUSSMANN B. ELECTRE: A method to guide the choice in the presence of multiple points of view [J]. The Scientific Direction of SEMA, 1966, 49: 1–35.

    Google Scholar 

  40. SAATY T L. The analytic hierarchy process: Planning, priority setting, resources allocation [M]. New York: McGraw, 1980.

    MATH  Google Scholar 

  41. ROUBENS M. Preference relations on actions and criteria in multicriteria decision making [J]. European Journal of Operational Research, 1982, 10(1): 51–55.

    Article  MATH  Google Scholar 

  42. PASTIJN H, LEYSEN J. Constructing an outranking relation with ORESTE [J]. Mathematical and Computer Modelling, 1989, 12(10, 11): 1255–1268.

    Article  Google Scholar 

  43. PARKAN C, WU M L. On the equivalence of operational performance measurement and multiple attribute decision making [J]. International Journal of Production Research, 1997, 35(11): 2963–2988.

    Article  MATH  Google Scholar 

  44. ZAVADSKAS E K, KAKLAUSKAS A, TURSKIS Z, TAMOŠAITIENE J. Selection of the effective dwelling house walls by applying attributes values determined at intervals [J]. Journal of Civil Engineering and Management, 2008, 14(2): 85–93.

    Article  Google Scholar 

  45. MARTEL J M, MATARAZZO B. Other outranking approaches [C]// Multiple Criteria Decision Analysis: State of the Art Surveys. New York: Springer, 2005: 197–259.

    Chapter  Google Scholar 

  46. BRAUERS W K, GINEVICIUS R, PODVEZKO V. Regional development in Lithuania considering multiple objectives by the MOORA method [J]. Technological and Economic Development of Economy, 2010, 16(4): 613–640.

    Article  Google Scholar 

  47. RAO R V, DAVIM J P. A decision-making framework model for material selection using a combined multiple attribute decision-making method [J]. The International Journal of Advanced Manufacturing Technology, 2008, 35(7, 8): 751–760.

    Article  Google Scholar 

  48. JEE D H, KANG K [J]. A method for optimal material selection aided with decision making theory [J]. Materials & Design, 2000, 21(3): 199–206.

    Article  Google Scholar 

  49. MILANI A S, SHANIAN A, MADOLIAT R, NEMES J A. The effect of normalization norms in multiple attribute decision making models: A case study in gear material selection [J]. Structural and Multidisciplinary Optimization, 2005, 29(4): 312–318.

    Article  Google Scholar 

  50. SHANIAN A, SAVADOGO O. TOPSIS multiple-criteria decision support analysis for material selection of metallic bipolar plates for polymer electrolyte fuel cell [J]. Journal of Power Sources, 2006, 159(2): 1095–1104.

    Article  Google Scholar 

  51. GUPTA N. Material selection for thin-film solar cells using multiple attribute decision making approach [J]. Materials & Design, 2011, 32(3): 1667–1671.

    Article  Google Scholar 

  52. JAHAN A, BAHRAMINASAB M, EDWARDS K L. A target-based normalization technique for materials selection [J]. Materials & Design, 2012, 35: 647–654.

    Article  Google Scholar 

  53. KUMAR R, RAY A. Selection of material for optimal design using multi-criteria decision making [J]. Procedia Materials Science, 2014, 6: 590–596.

    Article  Google Scholar 

  54. RASTOGI M, CHAUHAN A, VAISH R, KISHAN A. Selection and performance assessment of phase change materials for heating, ventilation and air-conditioning applications [J]. Energy Conversion and Management, 2015, 89: 260–269.

    Article  Google Scholar 

  55. KISS L N, MARTEL J M, NADEAU R. ELECCALC—An interactive software for modelling the decision maker’s preferences [J]. Decision Support Systems, 1994, 12(4, 5): 311–326.

    Article  Google Scholar 

  56. ROY B, VANDERPOOTEN D. The European school of MCDA: Emergence, basic features and current works [J]. Journal of Multi-Criteria Decision Analysis, 1996, 5(1): 22–38.

    Article  Google Scholar 

  57. ROY B. ELECTRE III: A ranking algorithm based on a fuzzy representation of preferences in the presence of multiple criteria [J]. CERO Papers, 1978, 20(1): 3–24.

    Google Scholar 

  58. ROY B, PRÉSENT D M, SILHOL D. A programming method for determining which Paris metro stations should be renovated [J]. European Journal of Operational Research, 1986, 24(2): 318–334.

    Article  Google Scholar 

  59. ALMEIDA-DIAS J, FIGUEIRA J R, ROY B. A multiple criteria sorting method where each category is characterized by several reference actions: The Electre Tri-nC method [J]. European Journal of Operational Research, 2012, 217(3): 567–579.

    Article  MathSciNet  MATH  Google Scholar 

  60. ROY B, BOUYSSOU D. Multi-criteria decision support: Methods and cases [M]. Paris: Economica, 1993.

    Google Scholar 

  61. ROY B. A conceptual framework for a prescriptive theory of decision aid [M]// Multiple Criteria Decision Making. North-Holland Publishing Company, 1977.

    Google Scholar 

  62. SHANIAN A, SAVADOGO O. TOPSIS multiple-criteria decision support analysis for material selection of metallic bipolar plates for polymer electrolyte fuel cell [J]. Journal of Power Sources, 2006: 159(2): 1095–1104.

    Article  Google Scholar 

  63. SHANIAN A, SAVADOGO O. A material selection model based on the concept of multiple attribute decision making [J]. Materials & Design, 2006, 27(4): 329–337.

    Article  Google Scholar 

  64. SHANIAN A, SAVADOGO O. A non-compensatory compromised solution for material selection of bipolar plates for polymer electrolyte membrane fuel cell (PEMFC) using ELECTRE IV [J]. Electrochimica Acta, 2006, 51(25): 5307–5315.

    Article  Google Scholar 

  65. MILANI A S, SHANIAN A. Gear material selection with uncertain and incomplete data. Material performance indices and decision aid model [J]. International Journal of Mechanics and Materials in Design, 2006, 3(3): 209–222.

    Article  Google Scholar 

  66. SHANIAN A, MILANI A S, CARSON C, ABEYARATNE R C. A new application of ELECTRE III and revised Simos’ procedure for group material selection under weighting uncertainty [J]. Knowledge-Based Systems, 2008, 21(7): 709–720.

    Article  Google Scholar 

  67. MARESCHAL B, BRANS J P. Geometrical representations for MCDA [J]. European Journal of Operational Research, 1988, 34(1): 69–77.

    Article  MathSciNet  Google Scholar 

  68. MARESCHAL B, BRANS J P. The PROMETHEE-GAIA decision support system for multicriteria investigations [J]. Investigation Operativa, 1994, 4(2): 107–117.

    Google Scholar 

  69. BRANS J P, MARESCHAL B. PROMETHEE V: MCDM problems with segmentation constraints [J]. INFOR: Information Systems and Operational Research, 1992, 30(2): 85–96.

    MATH  Google Scholar 

  70. BRANS J P, MARESCHAL B. The PROMETHEE VI procedure: How to differentiate hard from soft multicriteria problems [J]. Journal of Decision Systems, 1995, 4(3): 213–223.

    Article  Google Scholar 

  71. MACHARIS C, BRANS J P, MARESCHAL B. The GDSS promethee procedure [J]. Journal of Decision Systems, 1998, 7(4): 283–307.

    Google Scholar 

  72. FIGUEIRA J, GRECO S, EHRGOTT M. Multiple criteria decision analysis: State of the art surveys [M]. Boston, Dordrecht, London: Springer Verlag, 2005.

    Book  MATH  Google Scholar 

  73. MAITY S R, CHAKRABORTY S. A visual decision aid for gear materials selection [J]. Journal of the Institution of Engineers (India): Series C, 2013, 94(3): 199–212.

    Article  Google Scholar 

  74. SAATY T L. An eigenvalue allocation model for prioritization and planning [D]. Energy Management and Policy Center, University of Pennsylvania, 1972.

    Google Scholar 

  75. MILLER III J R. The assessment of worth: A systematic procedure and its experimental validation [D]. Massachusetts Institute of Technology, 1966.

    Google Scholar 

  76. PÖYHÖNEN M A, HAEMAELAEINEN R P, SALO A A. An experiment on the numerical modelling of verbal ratio statements [J]. Journal of Multi-Criteria Decision Analysis, 1997, 6(1): 1–10.

    Article  MATH  Google Scholar 

  77. STILLWELL W G, von WINTERFELDT D, JOHN R S. Comparing hierarchical and nonhierarchical weighting methods for eliciting multiattribute value models [J]. Management Science, 1987, 33(4): 442–450.

    Article  Google Scholar 

  78. LOOTSMA F A. Conflict resolution via pairwise comparison of concessions [J]. European Journal of Operational Research, 1989, 40(1): 109–116.

    Article  MathSciNet  Google Scholar 

  79. SALO A A, HÄMÄLÄINEN R P. On the measurement of preferences in the analytic hierarchy process [J]. Journal of Multi-Criteria Decision Analysis, 1997, 6(6): 309–319.

    Article  MATH  Google Scholar 

  80. DONEGAN H A, DODD F J, MCMASTER T B. A new approach to AHP decision-making [J]. The Statistician, 1992, 41(3): 295–302.

    Article  Google Scholar 

  81. JI P, JIANG R. Scale transitivity in the AHP [J]. Journal of the Operational Research Society, 2003, 54(8): 896–905.

    Article  MATH  Google Scholar 

  82. CHOO E U, WEDLEY W C. A common framework for deriving preference values from pairwise comparison matrices [J]. Computers & Operations Research, 2004, 31(6): 893–908.

    Article  MATH  Google Scholar 

  83. CRAWFORD G, WILLIAMS C. A note on the analysis of subjective judgment matrices [J]. Journal of Mathematical Psychology, 1985, 29(4): 387–405.

    Article  MATH  Google Scholar 

  84. AGUARON J, MORENO-JIMÉNEZ J M. The geometric consistency index: Approximated thresholds [J]. European Journal of Operational Research, 2003, 147(1): 137–145.

    Article  MATH  Google Scholar 

  85. CAO H J, LIU F, LI C B, LIU C. An integrated method for product material selection considering environmental factors and a case study [J]. Materials Science Forum, 2006, 532(1): 1032–1035.

    Google Scholar 

  86. DWEIRI F, AL-OQLA F M}. Material selection using analytical hierarchy process [J]. International Journal of Computer Applications in Technology, 2006, 26(4): 182–189.

    Article  Google Scholar 

  87. HAMBALI A, SAPUAN S M, ISMAIL N, NUKMAN Y. Material selection of polymeric composite automotive bumper beam using analytical hierarchy process [J]. Journal of Central South University of Technology, 2010, 17(2): 244–256.

    Article  Google Scholar 

  88. MANSOR M R, SAPUAN S M, ZAINUDIN E S, NURAINI A A, HAMBALI A. Hybrid natural and glass fibers reinforced polymer composites material selection using analytical hierarchy process for automotive brake lever design [J]. Materials & Design, 2013, 51: 484–492.

    Article  Google Scholar 

  89. ALI B A, SAPUAN S M, ZAINUDIN E S, OTHMAN M. Implementation of the expert decision system for environmental assessment in composite materials selection for automotive components [J]. Journal of Cleaner Production, 2015, 107: 557–567.

    Article  Google Scholar 

  90. QUIGLEY F P, BUGGY M, BIRKINSHAW C. Selection of elastomeric materials for compliant-layered total hip arthroplasty [J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2002, 216(1): 77–83.

    Article  Google Scholar 

  91. DEHGHAN-MANSHADI B, MAHMUDI H, ABEDIAN A, MAHMUDI R. A novel method for materials selection in mechanical design: Combination of non-linear normalization and a modified digital logic method [J]. Materials & Design, 2007, 28(1): 8–15.

    Article  Google Scholar 

  92. FAYAZBAKHSH K, ABEDIAN A, MANSHADI B D, KHABBAZ R S. Introducing a novel method for materials selection in mechanical design using Z-transformation in statistics for normalization of material properties [J]. Materials & Design, 2009, 30(10): 4396–4404.

    Article  Google Scholar 

  93. TAHERIAN R. A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection [J]. Journal of Power Sources, 2014, 265: 370–390.

    Article  Google Scholar 

  94. ZELENY M. Multiple criteria decision making [M]. New York: McGraw Hill, 2002.

    MATH  Google Scholar 

  95. OPRICOVIC S, TZENG G H. Multicriteria planning of post-earthquake sustainable reconstruction [J]. Computer-Aided Civil and Infrastructure Engineering, 2002, 17(3): 211–220.

    Article  Google Scholar 

  96. OPRICOVIC S, TZENG G H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS [J]. European Journal of Operational Research, 2004, 156(2): 445–455.

    Article  MATH  Google Scholar 

  97. OPRICOVIC S, TZENG G H. Extended VIKOR method in comparison with outranking methods [J]. European Journal of Operational Research, 2007, 178(2): 514–529.

    Article  MATH  Google Scholar 

  98. JAHAN A, MUSTAPHA F, ISMAIL M Y, SAPUAN S M, BAHRAMINASAB M. A comprehensive VIKOR method for material selection [J]. Materials & Design, 2011, 32(3): 1215–1221.

    Article  Google Scholar 

  99. BAHRAMINASAB M, JAHAN A. Material selection for femoral component of total knee replacement using comprehensive VIKOR [J]. Materials & Design, 2011, 32(8, 9): 4471–4477.

    Article  Google Scholar 

  100. ATHAWALE V M, MAITY S R, CHAKRABORTY S. Selection of gear material using compromise ranking method [J]. International Journal of Materials and Structural Integrity, 2012, 6(2-4): 257–269.

    Article  Google Scholar 

  101. LIU H C, MAO L X, ZHANG Z Y, LI P. Induced aggregation operators in the VIKOR method and its application in material selection [J]. Applied Mathematical Modelling, 2013, 37(9): 6325–6338.

    Article  MathSciNet  MATH  Google Scholar 

  102. LIU H C, LIU L, WU J. Material selection using an interval 2-tuple linguistic VIKOR method considering subjective and objective weights [J]. Materials & Design, 2013, 52: 158–167.

    Article  Google Scholar 

  103. SAYADI M K, HEYDARI M, SHAHANAGHI K. Extension of VIKOR method for decision making problem with interval numbers [J]. Applied Mathematical Modelling, 2009, 33(5): 2257–2262.

    Article  MathSciNet  MATH  Google Scholar 

  104. JAHAN A, EDWARDS K L. VIKOR method for material selection problems with interval numbers and target-based criteria [J]. Materials & Design, 2013, 47: 759–765.

    Article  Google Scholar 

  105. RAO R V. A material selection model using graph theory and matrix approach [J]. Materials Science and Engineering A, 2006, 431(1, 2): 248–255.

    Article  Google Scholar 

  106. CHAN J W. Application of grey relational analysis for ranking material options [J]. International Journal of Computer Applications in Technology, 2006, 26(4): 210–217.

    Article  Google Scholar 

  107. CHAN J W, TONG T K. Multi-criteria material selections and end-of-life product strategy: Grey relational analysis approach [J]. Materials & Design, 2007, 28(5): 1539–1546.

    Article  Google Scholar 

  108. KAKLAUSKAS A, ZAVADSKAS E K, TRINKUNAS V. A multiple criteria decision support on-line system for construction [J]. Engineering Applications of Artificial Intelligence, 2007, 20(2): 163–175.

    Article  Google Scholar 

  109. KAKLAUSKAS A, ZAVADSKAS E K, RASLANAS S, GINEVICIUS R, KOMKA A, MALINAUSKAS P. Selection of low-e windows in retrofit of public buildings by applying multiple criteria method COPRAS: A lithuanian case [J]. Energy and Buildings, 2006, 38(5): 454–462.

    Article  Google Scholar 

  110. ZAVADSKAS E K, KAKLAUSKAS A, PELDSCHUS F, TURSKIS Z. Multi-attribute assessment of road design solutions by using the COPRAS method [J]. Baltic Journal of Road & Bridge Engineering, 2007, 2(4): 195–203.

    Google Scholar 

  111. CHATTERJEE P, ATHAWALE V M, CHAKRABORTY S. Materials selection using complex proportional assessment and evaluation of mixed data methods [J]. Materials & Design, 2011, 32(2): 851–860.

    Article  Google Scholar 

  112. HAJKOWICZ S, HIGGINS A. A comparison of multiple criteria analysis techniques for water resource management [J]. European Journal of Operational Research, 2008, 184(1): 255–265.

    Article  MATH  Google Scholar 

  113. CHUNG E S, LEE K S. Identification of spatial ranking of hydrological vulnerability using multi-criteria decision making techniques: Case study of Korea [J]. Water Resources Management, 2009, 23(12): 2395–2416.

    Article  Google Scholar 

  114. USTINOVICHIUS L, ZAVADKAS E K, PODVEZKO V. Application of a quantitative multiple criteria decision making (MCDM-1) approach to the analysis of investments in construction [J]. Control and Cybernetics, 2007, 36(1): 251.

    MATH  Google Scholar 

  115. JEFFREYS I. The use of compensatory and noncompensatory multi-criteria analysis for small-scale forestry [J]. Small-scale Forest Economics, Management and Policy, 2004, 3(1): 99–117.

    Article  Google Scholar 

  116. MANIYA K, BHATT M G. A selection of material using a novel type decision-making method: Preference selection index method [J]. Materials & Design, 2010, 31(4): 1785–1789.

    Article  Google Scholar 

  117. SARKIS J. Quantitative models for performance measurement systems-Alternate considerations [J]. International Journal of Production Economics, 2003, 86(1): 81–90.

    Article  MathSciNet  Google Scholar 

  118. CHUNG S H, LEE A H, PEARN W L. Analytic network process (ANP) approach for product mix planning in semiconductor fabricator [J]. International Journal of Production Economics, 2005, 96(1): 15–36.

    Article  Google Scholar 

  119. SAATY T L. Decision making with dependence and feedback: The analytic network process [M]. Pittsburgh, PA: RWS Publications, 1996.

    Google Scholar 

  120. MILANI A S, SHANIAN A, LYNAM C, SCARINCI T. An application of the analytic network process in multiple criteria material selection [J]. Materials & Design, 2013, 44: 622–632.

    Article  Google Scholar 

  121. PARKAN C, WU M L. Comparison of three modern multicriteria decision-making tools [J]. International Journal of Systems Science, 2000, 31(4): 497–517.

    Article  MATH  Google Scholar 

  122. PARKAN C. On OCRA: Response to comments by Wang (2004) [J]. European Journal of Operational Research, 2006, 169(1): 332–337.

    Article  MATH  Google Scholar 

  123. BRAUERS W K, GINEVICIUS R, PODVEZKO V. Regional development in Lithuania considering multiple objectives by the MOORA method [J]. Technological and Economic Development of Economy, 2010, 16(4): 613–640.

    Article  Google Scholar 

  124. HAFEZALKOTOB A, HAFEZALKOTOB A. Comprehensive MULTIMOORA method with target-based attributes and integrated significant coefficients for materials selection in biomedical applications [J]. Materials & Design, 2015, 87: 949–959.

    Article  Google Scholar 

  125. HAFEZALKOTOB A, HAFEZALKOTOB A, SAYADI M K. Extension of MULTIMOORA method with interval numbers: An application in materials selection [J]. Applied Mathematical Modelling, 2016, 40(2): 1372–1386.

    Article  MathSciNet  MATH  Google Scholar 

  126. GOMES L F, MACHADO M A, RANGEL L A. Behavioral multi-criteria decision analysis: The TODIM method with criteria interactions [J]. Annals of Operations Research, 2013, 211(1): 531–548.

    Article  MathSciNet  MATH  Google Scholar 

  127. ZINDANI D, MAITY S R, BHOWMIK S, CHAKRABORTY S. A material selection approach using the TODIM (Tomada de DecisaoInterativa Multicriterio) method and its analysis [J]. International Journal of Materials Research, 2017, 108(5): 345–354.

    Article  Google Scholar 

  128. ZADEH L A, KLIR J G. Fuzzy sets, fuzzy logic and fuzzy systems [M]. World Scientific, 1996.

    Book  Google Scholar 

  129. CARLSSON C, FULLÉR R. Fuzzy multiple criteria decision making: Recent developments [J]. Fuzzy Sets and Systems, 1996, 78(2): 139–153.

    Article  MathSciNet  MATH  Google Scholar 

  130. LIAO T W. A fuzzy multicriteria decision-making method for material selection [J]. Journal of Manufacturing Systems, 1996, 15(1): 1–12.

    Article  Google Scholar 

  131. KADANE J B. Principles of uncertainty [M]. CRC Press, 2011.

    Book  MATH  Google Scholar 

  132. LIOU J J, TZENG G H. Comments on “Multiple criteria decision making (MCDM) methods in economics”: An overview [J]. Technological and Economic Development of Economy, 2012, 18(4): 672–695.

    Article  Google Scholar 

  133. ÖLÇER A I, ODABASI A Y. A new fuzzy multiple attributive group decision making methodology and its application to propulsion/manoeuvring system selection problem [J]. European Journal of Operational Research, 2005, 166(1): 93–114.

    Article  MATH  Google Scholar 

  134. SIMÕES-MARQUES M, RIBEIRO R A, GAMEIRO-MARQUES A. A fuzzy decision support system for equipment repair under battle conditions [J]. Fuzzy Sets and Systems, 2000, 115(1): 141–157.

    Article  Google Scholar 

  135. TZENG G H, HUANG J [J]. Multiple attribute decision making: Methods and applications [M]. CRC Press, 2011.

    Book  MATH  Google Scholar 

  136. WANG M J, CHANG T C. Tool steel materials selection under fuzzy environment [J]. Fuzzy Sets and Systems, 1995, 72(3): 263–270.

    Article  Google Scholar 

  137. CHEN S M. A new method for tool steel materials selection under fuzzy environment [J]. Fuzzy Sets and Systems, 1997, 92(3): 265–274.

    Article  Google Scholar 

  138. GIACHETTI R E. A decision support system for material and manufacturing process selection [J]. Journal of Intelligent Manufacturing, 1998, 9(3): 265–276.

    Article  MathSciNet  Google Scholar 

  139. ULLAH A S, HARIB K H. An intelligent method for selecting optimal materials and its application [J]. Advanced Engineering Informatics, 2008, 22(4): 473–483.

    Article  Google Scholar 

  140. KHABBAZ R S, MANSHADI B D, ABEDIAN A, MAHMUDI R. A simplified fuzzy logic approach for materials selection in mechanical engineering design [J]. Materials & Design, 2009, 30(3): 687–697.

    Article  Google Scholar 

  141. CICEK K, CELIK M. Selection of porous materials in marine system design: The case of heat exchanger aboard ships [J]. Materials & Design, 2009, 30(10): 4260–4266.

    Article  Google Scholar 

  142. YANG S, JU Y. A novel multiple attribute material selection approach with uncertain membership linguistic information [J]. Materials & Design, 2014, 63: 664–671.

    Article  Google Scholar 

  143. HAFEZALKOTOB A, HAFEZALKOTOB A. Risk-based material selection process supported on information theory: A case study on industrial gas turbine [J]. Applied Soft Computing, 2017, 52: 1116–1129.

    Article  Google Scholar 

  144. SCHMIDT W P, TAYLOR A. Ford of Europe’s product sustainability index [C]// Proceedings of 13th CIRP International Conference on Life Cycle Engineering. Leuven. 2006: 5–10.

    Google Scholar 

  145. SAUR K, FAVA J A, SPATARI S. Life cycle engineering case study: Automobile fender designs [J]. Environmental Progress & Sustainable Energy, 2000, 19(2): 72–82.

    Google Scholar 

  146. BANAITIENE N, BANAITIS A, KAKLAUSKAS A, ZAVADSKAS E K. Evaluating the life cycle of a building: A multivariant and multiple criteria approach [J]. Omega, 2008, 36(3): 429–421.

    Article  Google Scholar 

  147. EBERT C. The impacts of software product management [J]. Journal of Systems and Software, 2007, 80(6): 850–861.

    Article  Google Scholar 

  148. PENOYER J A, BURNETT G J, FAWCETT D J, LIOU S Y. Knowledge based product life cycle systems: Principles of integration of KBE and C3P [J]. Computer-Aided Design, 2000, 32(5, 6): 311–320.

    Article  Google Scholar 

  149. SHTUB A, BARD J F, GLOBERSON S. Project management: Processes, methodologies, and economics [M]. Upper Saddle River, NJ: Pearson Prentice Hall, 2005.

    Google Scholar 

  150. KROZER Y. Life cycle costing for innovations in product chains [J]. Journal of Cleaner Production, 2008, 16(3): 310–321.

    Article  Google Scholar 

  151. JOHANSSON K, PERZON M, FRÖLING M, MOSSAKOWSKA A, SVANSTRÖ M M. Sewage sludge handling with phosphorus utilization-life cycle assessment of four alternatives [J]. Journal of Cleaner Production, 2008, 16(1): 135–151.

    Article  Google Scholar 

  152. DEHAES H A, HEIJUNGS R. Life-cycle assessment for energy analysis and management [J]. Applied Energy, 2007, 84(7, 8): 817–827.

    Google Scholar 

  153. KASAI J. Life cycle assessment, evaluation method for sustainable development [J]. JSAE Review, 1999, 20(3): 387–394.

    Article  Google Scholar 

  154. SAUR K, FAVA J A, SPATARI S. Life cycle engineering case study: Automobile fender designs [J]. Environmental Progress & Sustainable Energy, 2000, 19(2): 72–82.

    Google Scholar 

  155. FITCH P E, COOPER J S. Life cycle energy analysis as a method for material selection [J]. Journal of Mechanical Design, 2004, 126(5): 798–804.

    Article  Google Scholar 

  156. giudicefllarosagrisitaa. materials selection in the life-cycle design process: a method to integrate mechanical and environmental performances in optimal choice [j]. materials & design 20052619–20.

    Article  Google Scholar 

  157. RIBEIRO I, PEÇAS P, SILVA A, HENRIQUES E. Life cycle engineering methodology applied to material selection, a fender case study [J]. Journal of Cleaner Production, 2008, 16(17): 1887–1899.

    Article  Google Scholar 

  158. HUANG H, LIU Z, ZHANG L, SUTHERLAND J W. Materials selection for environmentally conscious design via a proposed life cycle environmental performance index [J]. The International Journal of Advanced Manufacturing Technology, 2009, 44(11, 12): 1073–1082.

    Article  Google Scholar 

  159. MAYYAS A T, QATTAWI A, MAYYAS A R, OMAR M A. Life cycle assessment-based selection for a sustainable lightweight body-in-white design [J]. Energy, 2012, 39(1): 412–425.

    Article  Google Scholar 

  160. RIBEIRO I, PEÇAS P, HENRIQUES E. A life cycle framework to support materials selection for Ecodesign: A case study on biodegradable polymers [J]. Materials & Design, 2013, 51: 300–308.

    Article  Google Scholar 

  161. PEÇAS P, RIBEIRO I, SILVA A, HENRIQUES E. Comprehensive approach for informed life cycle-based materials selection [J]. Materials & Design, 2013, 43: 220–232.

    Article  Google Scholar 

  162. POULIKIDOU S, SCHNEIDER C, BJÖRKLUND A, KAZEMAHVAZI S, WENNHAGE P, ZENKERT D. A material selection approach to evaluate material substitution for minimizing the life cycle environmental impact of vehicles [J]. Materials & Design, 2015, 83: 704–712.

    Article  Google Scholar 

  163. AKHTAR S, REZA B, HEWAGE K, SHAHRIAR A, ZARGAR A, SADIQ R. Life cycle sustainability assessment (LCSA) for selection of sewer pipe materials [J]. Clean Technologies and Environmental Policy, 2015, 17(4): 973–992.

    Article  Google Scholar 

  164. SUN X, LIU J, LU B, ZHANG P, ZHAO M. Life cycle assessment-based selection of a sustainable lightweight automotive engine hood design [J]. The International Journal of Life Cycle Assessment, 2017, 22(9): 1373–1383.

    Article  Google Scholar 

  165. HOLLAND J. Adaptation in natural and artificial systems [M]. University of Michigan Press, 1975.

    Google Scholar 

  166. GOLDBERG D E. Genetic algorithms in search, optimization and machine learning [M]. Addison-Wesley, Reading, MA, 1989.

    MATH  Google Scholar 

  167. CARROLL D L. Chemical laser modeling with genetic algorithms [J]. AIAA Journal, 1996, 34(2): 338–346.

    Article  Google Scholar 

  168. WINTER G, CUESTA P, PERIAUX J, GALAN M. Genetic algorithm in engineering and computer science [M]. John Wiley & Sons, 1996.

    Google Scholar 

  169. LADD S R. Genetic algorithms in C++ [M]. M&T Books, 1996.

    Google Scholar 

  170. SMITH L N, GERMAN R M, SMITH M L. A neural network approach for solution of the inverse problem for selection of powder metallurgy materials [J]. Journal of Materials Processing Technology, 2002, 120(1-3): 419–425.

    Article  Google Scholar 

  171. YANG S Y, TANSEL I N, KROPAS-HUGHES C V. Selection of optimal material and operating conditions in composite manufacturing. Part I: Computational tool [J]. International Journal of Machine Tools and Manufacture, 2003, 43(2): 169–173.

    Article  Google Scholar 

  172. CUI X, WANG S, HU S [J]. A method for optimal design of automotive body assembly using multi-material construction [J]. Materials & Design, 2008, 29(2): 381–387.

    Article  Google Scholar 

  173. ZHANG X J, CHEN K Z, FENG X A. Material selection using an improved genetic algorithm for material design of components made of a multiphase material [J]. Materials & Design, 2008, 29(5): 972–981.

    Article  Google Scholar 

  174. ZHOU C C, YIN G F, HU X B. Multi-objective optimization of material selection for sustainable products: Artificial neural networks and genetic algorithm approach [J]. Materials & Design, 2009, 30(4): 1209–1215.

    Article  Google Scholar 

  175. BRADLEY R, JAWAHIR I S, BADURDEEN F, ROUCH K. A framework for material selection in multi-generational components: Sustainable value creation for a circular economy [J]. Procedia CIRP, 2016, 48: 370–375.

    Article  Google Scholar 

  176. SCHNIEDERJANS M J, PANTOYA M L, HOFFMAN J J, WILLAUER D L. A multi-objective modeling approach for energetic material evaluation decisions [J]. European Journal of Operational Research, 2009, 194(3): 629–636.

    Article  MATH  Google Scholar 

  177. ATHAWALE V M, KUMAR R, CHAKRABORTY S. Decision making for material selection using the UTA method [J]. The International Journal of Advanced Manufacturing Technology, 2011, 57(1-4): 11–22.

    Article  Google Scholar 

  178. ALY M F, HAMZA K T, FARAG M M. A materials selection procedure for sandwiched beams via parametric optimization with applications in automotive industry [J]. Materials & Design, 2014, 56: 219–226.

    Article  Google Scholar 

  179. ASHBY M F. Material selection in mechanical design [M]. Oxford (UK): Butterworth, 1999.

    Google Scholar 

  180. ASHBY M F. Multi-objective optimization in material design and selection [J]. Actamaterialia, 2000, 48(1): 359–369.

    Google Scholar 

  181. PARATE O, GUPTA N. Material selection for electrostatic microactuators using Ashby approach [J]. Materials & Design, 2011, 32(3): 1577–1581.

    Article  Google Scholar 

  182. RASHEDI A, SRIDHAR I, TSENG K [J]. Multi-objective material selection for wind turbine blade and tower: Ashby’s approach [J]. Materials & Design, 2012, 37: 521–532.

    Article  Google Scholar 

  183. ANTUNES R A, de OLIVEIRA M C. Materials selection for hot stamped automotive body parts: An application of the Ashby approach based on the strain hardening exponent and stacking fault energy of materials [J]. Materials & Design, 2014, 63: 247–256.

    Article  Google Scholar 

  184. ASGHARPOUR M [J]. Multiple criteria decision making [M]. Tehran: Tehran University Publications, 1999.

    Google Scholar 

  185. JAHAN A, ISMAIL M Y, MUSTAPHA F, SAPUAN SM. Material selection based on ordinal data [J]. Materials & Design, 2010, 31(7): 3180–3187.

    Article  Google Scholar 

  186. DENG J L. Introduction to grey system theory [J]. J Grey Theory, 1988, 1: 1–24.

    MathSciNet  Google Scholar 

  187. LIN Y H, LEE P C, TING H I. Dynamic multi-attribute decision making model with grey number evaluations [J]. Expert Systems with Applications, 2008, 35(4): 1638–1644.

    Article  Google Scholar 

  188. THAKKER A, JARVIS J, BUGGY M, SAHED A. A novel approach to materials selection strategy case study: Wave energy extraction impulse turbine blade [J]. Materials & Design, 2008, 29(10): 1973–1980.

    Article  Google Scholar 

  189. MAYYAS A, SHEN Q, MAYYAS A, SHAN D, QATTAWI A, OMAR M. Using quality function deployment and analytical hierarchy process for material selection of body-in-white [J]. Materials & Design, 2011, 32(5): 2771–2782.

    Article  Google Scholar 

  190. RATHOD M K, KANZARIA H V. A methodological concept for phase change material selection based on multiple criteria decision analysis with and without fuzzy environment [J]. Materials & Design, 2011, 32(6): 3578–3585.

    Article  Google Scholar 

  191. MAITY S R, CHATTERJEE P, CHAKRABORTY S. Cutting tool material selection using grey complex proportional assessment method [J]. Materials & Design, 2012, 36: 372–378.

    Article  Google Scholar 

  192. MAITY S, CHAKRABORTY S. Supercritical boiler material selection using fuzzy analytic network process [J]. Management Science Letters, 2012, 2(4): 1083–1096.

    Article  Google Scholar 

  193. GIRUBHA R J, VINODH S. Application of fuzzy VIKOR and environmental impact analysis for material selection of an automotive component [J]. Materials & Design, 2012, 37: 478–486.

    Article  Google Scholar 

  194. CAVALLINI C, GIORGETTI A, CITTI P, NICOLAIE F. Integral aided method for material selection based on quality function deployment and comprehensive VIKOR algorithmz [J]. Materials & Design, 2013, 47: 27–34.

    Article  Google Scholar 

  195. PENG A H, XIAO X M. Material selection using PROMETHEE combined with analytic network process under hybrid environment [J]. Materials & Design, 2013, 47: 643–652.

    Article  Google Scholar 

  196. JAHAN A, EDWARDS K L. Weighting of dependent and target-based criteria for optimal decision-making in materials selection process: Biomedical applications [J]. Materials & Design, 2013, 49: 1000–1008.

    Article  Google Scholar 

  197. LIU H C, YOU J X, ZHEN L, FAN X [J]. A novel hybrid multiple criteria decision making model for material selection with target-based criteria [J]. Materials & Design, 2014, 60: 380–390.

    Article  Google Scholar 

  198. YANG S S, NASR N, ONG S K, NEE A Y. Designing automotive products for remanufacturing from material selection perspective [J]. Journal of Cleaner Production, 2017, 153: 570–579.

    Article  Google Scholar 

  199. LIAO T W. Two interval type 2 fuzzy TOPSIS material selection methods [J]. Materials & Design, 2015, 88: 1088–1099.

    Article  Google Scholar 

  200. XUE Y X, YOU J X, LAI X D, LIU H C. An interval-valued intuitionistic fuzzy MABAC approach for material selection with incomplete weight information [J]. Applied Soft Computing, 2016, 38: 703–713.

    Article  Google Scholar 

  201. DAS D, BHATTACHARYA S, SARKAR B. Decision-based design-driven material selection: A normative-prescriptive approach for simultaneous selection of material and geometric variables in gear design [J]. Materials & Design, 2016, 92: 787–793.

    Article  Google Scholar 

  202. MASTURA M T, SAPUAN S M, MANSOR M R, NURAINI A A. Environmentally conscious hybrid biocomposite material selection for automotive anti-roll bar [J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(5-8): 2203–2219.

    Article  Google Scholar 

  203. CANDAN G, KIR S, YAZGAN H R. Solution of material selection problem using fuzzy axiomatic design and DEMATEL methods [J]. Acta Physica Polonica A, 2017, 131(1): 24–27.

    Article  Google Scholar 

  204. THURSTON D L, CARNAHAN J V. Fuzzy ratings and utility analysis in preliminary design evaluation of multiple attributes [J]. Journal of Mechanical Design, Transactions of the ASME, 1992, 114(4): 648–658.

    Article  Google Scholar 

  205. CHATTERJEE P, ATHAWALE V M, CHAKRABORTY S. Selection of materials using compromise ranking and outranking methods [J]. Materials & Design, 2009, 30(10): 4043–4053.

    Article  Google Scholar 

  206. SHANIAN A, SAVADOGO O. A methodological concept for material selection of highly sensitive components based on multiple criteria decision analysis [J]. Expert Systems with Applications, 2009, 36(2): 1362–1370.

    Article  Google Scholar 

  207. CHAUHAN A, VAISH R. A comparative study on material selection for micro-electromechanical systems [J]. Materials & Design, 2012, 41: 177–181.

    Article  Google Scholar 

  208. ATHAWALE V M, CHAKRABORTY S. Material selection using multi-criteria decision-making methods: A comparative study [J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2012, 226(4): 266–285.

    Article  Google Scholar 

  209. KARANDE P, CHAKRABORTY S. Application of multi-objective optimization on the basis of ratio analysis (MOORA) method for materials selection [J]. Materials & Design, 2012, 37: 317–324.

    Article  Google Scholar 

  210. CHATTERJEE P, CHAKRABORTY S. Material selection using preferential ranking methods [J]. Materials & Design, 2012, 35: 384–393.

    Article  Google Scholar 

  211. KHORSHIDI R, HASSANI A. Comparative analysis between TOPSIS and PSI methods of materials selection to achieve a desirable combination of strength and workability in Al/SiC composite [J]. Materials & Design, 2013, 52: 999–1010.

    Article  Google Scholar 

  212. CHAUHAN A, VAISH R. Hard coating material selection using multi-criteria decision making [J]. Materials & Design, 2013, 44: 240–245.

    Article  Google Scholar 

  213. ÇALISKAN H, KURSUNCU B, KURBANOGLU C, GÜVEN S Y. Material selection for the tool holder working under hard milling conditions using different multi criteria decision making methods [J]. Materials & Design, 2013, 45: 473–479.

    Article  Google Scholar 

  214. ANOJKUMAR L, ILANGKUMARAN M, SASIREKHA V. Comparative analysis of MCDM methods for pipe material selection in sugar industry [J]. Expert Systems with Applications, 2014, 41(6): 2964–2980.

    Article  Google Scholar 

  215. DARJI V P, RAO R V. Intelligent multi criteria decision making methods for material selection in sugar industry [J]. Procedia Materials Science, 2014, 5: 2585–2594.

    Article  Google Scholar 

  216. YAZDANI M, PAYAM A F. A comparative study on material selection of microelectromechanical systems electrostatic actuators using Ashby, VIKOR and TOPSIS [J]. Materials & Design, 2015, 65: 328–334.

    Article  Google Scholar 

  217. KUMAR R, RAY A. Optimal selection of material: an eclectic decision [J]. Journal of the Institution of Engineers (India): Series C, 2015, 96(1): 29–33.

    Article  Google Scholar 

  218. KUMAR R, SINGAL S K. Penstock material selection in small hydropower plants using MADM methods [J]. Renewable and Sustainable Energy Reviews, 2015, 52: 240–255.

    Article  Google Scholar 

  219. SEN B, BHATTACHARJEE P, MANDAL U K. A Comparative study of some prominent Multi criteria decision making methods for connecting rod material selection [J]. Perspectives in Science, 2016, 8: 547–549.

    Article  Google Scholar 

  220. HASANZADEH R, AZDAST T, LEE E R, GHAZI A A. Experimental polymeric nanocomposite material selection for automotive bumper beam using multi-criteria decision making methods [J]. Iranian Journal of Materials Science and Engineering, 2017, 14(3): 1–10.

    Google Scholar 

  221. ADHIKARI P R, MIRSHAMS R. Study of knowledge-based system (KBS) and decision making methodologies in materials selection for lightweight aircraft metallic structures [J]. Journal of Applied Science & Engineering Technology, 2017, 5(1): 1–19.

    Google Scholar 

  222. NADERZADEH M, ARABALIBEIK H, MONAZZAM M R, GHASEMI I. Comparative analysis of AHP-TOPSIS and fuzzy AHP models in selecting appropriate nanocomposites for environmental noise barrier applications [J]. Fluctuation and Noise Letters, 2017, 16(4): 1750038.

    Article  Google Scholar 

  223. JAHAN A, EDWARDS K L. A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design [J]. Materials & Design, 2015, 65: 335–342.

    Article  Google Scholar 

  224. CHARNES A, COOPER W W, RHODES E. Measuring the efficiency of decision making units [J]. European Journal of Operational Research, 1978, 2(6): 429–444.

    Article  MathSciNet  MATH  Google Scholar 

  225. COOPER W W, SEIFORD L M, TONE K. Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver software [M]. Berlin: Springer, 2007.

    MATH  Google Scholar 

  226. PODINOVSKI V V, THANASSOULIS E. Improving discrimination in data envelopment analysis: Some practical suggestions [J]. Journal of Productivity Analysis, 2007, 28(1, 2): 117–126.

    Article  Google Scholar 

  227. STEWART T [J]. Relationships between data envelopment analysis and multicriteria decision analysis [J]. Journal of the Operational Research Society, 1996, 47(5): 654–665.

    Article  MATH  Google Scholar 

  228. WU D. A note on DEA efficiency assessment using ideal point: An improvement of Wang and Luo’s model [J]. Applied Mathematics and Computation, 2006, 183(2): 819–830.

    Article  MathSciNet  MATH  Google Scholar 

  229. KOU G, PENG Y, WANG G. Evaluation of clustering algorithms for financial risk analysis using MCDM methods [J]. Information Sciences, 2014, 10, 275: 1–2.

    Article  Google Scholar 

  230. OPRICOVIC S, TZENG G H. Comparing DEA and MCDM method [M]// Multi-Objective Programming and Goal Programming. Berlin, Heidelberg: Springer, 2003.

    MATH  Google Scholar 

  231. DYSON R G, ALLEN R, CAMANHO A S, PODINOVSKI V V, SARRICO C S, SHALE E A. Pitfalls and protocols in DEA [J]. European Journal of Operational Research, 2001, 132(2): 245–259.

    Article  MATH  Google Scholar 

  232. DOYLE J R. Multiattribute choice for the lazy decision maker: Let the alternatives decide! [J]. Organizational Behavior and Human Decision Processes, 1995, 62(1): 87–100.

    Article  Google Scholar 

  233. WANG Y M, LUO Y. DEA efficiency assessment using ideal and anti-ideal decision making units [J]. Applied Mathematics and Computation, 2006, 173(2): 902–915.

    Article  MathSciNet  MATH  Google Scholar 

  234. MIRHEDAYATIAN S M, VAHDAT S E, JELODAR M J, SAEN R F. Welding process selection for repairing nodular cast iron engine block by integrated fuzzy data envelopment analysis and TOPSIS approaches [J]. Materials & Design, 2013, 43: 272–282.

    Article  Google Scholar 

  235. WU D. A note on DEA efficiency assessment using ideal point: An improvement of Wang and Luo’s model [J]. Applied Mathematics and Computation, 2006, 183(2): 819–830.

    Article  MathSciNet  MATH  Google Scholar 

  236. MOUSAVI-NASAB S H, SOTOUDEH-ANVARI A. A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems [J]. Materials & Design, 2017, 121(5): 237–253.

    Article  Google Scholar 

  237. LIN Y, WANG Y. Group decision making with consistency of intuitionistic fuzzy preference relations under uncertainty [J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(3): 741–748.

    Article  MathSciNet  Google Scholar 

  238. MAREDA T, GAUDARD L, ROMERIO F. A parametric genetic algorithm approach to assess complementary options of large scale windsolar coupling [J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(2): 260–272.

    Article  Google Scholar 

  239. TIAN G, ZHANG H, FENG Y, WANG D, PENG Y, JIA H. Green decoration materials selection under interior environment characteristics: A grey-correlation based hybrid MCDM method [J]. Renewable and Sustainable Energy Reviews, 2018, 81(1): 682–692.

    Article  Google Scholar 

  240. GUO J, ZHOU M, LI Z, XIE H. Green design assessment of electromechanical products based on group weighted-AHP [J]. Enterprise Information Systems, 2015, 9(8): 878–899.

    Article  Google Scholar 

  241. TIAN G, ZHANG H, FENG Y, JIA H, ZHANG C, JIANG Z, LI Z, LI P. Operation patterns analysis of automotive components remanufacturing industry development in China [J]. Journal of Cleaner Production, 2017, 15, 164: 1363–1375

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from MHRD, India during the course of research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Bhowmik PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zindani, D., Maity, S.R. & Bhowmik, S. Decision making tools for optimal material selection: A review. J. Cent. South Univ. 27, 629–673 (2020). https://doi.org/10.1007/s11771-020-4322-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4322-1

Key words

关键词

Navigation