Skip to main content
Log in

Performance of interface between TRC and existing concrete under a chloride dry-wet cycle environment

氯盐干湿循环下纤维编织网增强混凝土与既有混凝土的界面性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Textile-reinforced concrete (TRC) is suitable to repair and reinforce concrete structures in harsh environments. The performance of the interface between TRC and existing concrete is an important factor in determining the strengthening effect of TRC. In this paper, a double-sided shear test was performed to investigate the effects of the chloride dry-wet cycles on the average shear strength and slip at the interface between the TRC and existing concrete, also considering the existing concrete strength, bond length, textile layer and short-cut fiber arrangements. In addition, X-ray diffraction (XRD) technology was used to analyze the microscopic matter at the interface in the corrosive environment. The experimental results indicate that the interface performance between TRC and existing concrete would decrease with continued chloride dry-wet cycles. Compared with the specimen with a single layer of textile reinforcement, the specimens with two layers of textile with added PVA or AR-glass short-cut fibers could further improve the properties of the interface between the TRC layer and existing concrete. For the TRC with a single layer of textile, the average shear strength tended to decrease with increasing bond length. In addition, the strength grade of the existing concrete had a minor effect on the interface properties.

摘要

纤维编织网增强混凝土(TRC)适用于恶劣环境下混凝土结构的修补和增强。TRC 与既有混凝土 的界面性能是决定TRC 加固效果的重要因素。本文通过双面剪切试验研究了氯盐干湿循环对TRC 与 既有混凝土界面处平均抗剪强度和滑移的影响, 同时考虑了既有混凝土强度、粘结长度、加固层数和 掺加短切纤维等因素。此外, 还利用X 射线衍射(XRD)技术分析了腐蚀环境中界面处的微观物质。试 验结果表明, 随着氯盐干湿循环次数的增加, TRC 与既有混凝土的界面性能降低。与加固单层试件相 比, 加固两层且基体中掺入PVA 或AR-玻璃短切纤维的试件可以进一步改善TRC 层与既有混凝土的 界面性能。对于具有单层纤维编织网的TRC, 试件的平均抗剪强度随粘结长度的增加有减小的趋势。 此外, 既有混凝土的强度等级对TRC 与混凝土界面性能的影响较小。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SHI Xian-ming, XIE Ning, FORTUNE K, GONG Jing. Durability of steel reinforced concrete in chloride environments: An overview [J]. Construction and Building Materials, 2012, 30: 125–138. DOI: 10.1016/j.conbuildmat.2011.12.038.

    Article  Google Scholar 

  2. FU Chuan-qing, YE Hai-long, JIN Xian-yu, YAN Dong-ming, JIN Nan-guo, PENG Zhao-xiong. Chloride penetration into concrete damaged by uniaxial tensile fatigue loading [J]. Construction & Building Materials, 2016, 125: 714–723. DOI: 10.1016/j.conbuildmat.2016.08.096.

    Article  Google Scholar 

  3. YE Hai-long, FU Chuan-qing, JIN Nan-guo, JIN Xian-yu. Influence of flexural loading on chloride ingress in concrete subjected to cyclic drying-wetting condition [J]. Computers and Concrete, 2015(15): 183–198. DOI: 10.12989/cac.2015.15.2.183.

    Article  Google Scholar 

  4. YAN Dong-ming, LIN Gao, CHEN Gen-da. Dynamic properties of plain concrete in triaxial stress state [J]. ACI Materials Journal, 2009, 106(1): 89–94.

    Google Scholar 

  5. LU Yi-yan, HU Ling, LI Shan, WANG Kang-hao. Experimental study and analysis on fatigue stiffness of RC beams strengthened with CFRP and steel plate [J]. Journal of Central South University, 2016, 23(3): 701–707. DOI: 10.1007/s11771-016-3115-z.

    Article  Google Scholar 

  6. LIEBOLDT M, MECHTCHERINE V. Capillary transport of water through textile-reinforced concrete applied in repairing and/or strengthening cracked RC structures [J]. Cement and Concrete Research, 2013, 52: 53–62. DOI: 10.1016/j.cemconres.2013.05.012.

    Article  Google Scholar 

  7. COLAJANNI P, DOMENICO F, RECUPERO A, SPINELLAA N. Concrete columns confined with fibre reinforced cementitious mortars: Experimentation and modelling [J]. Construction and Building Materials, 2014, 52: 375–384. DOI: 10.1016/j.conbuildmat.2013.11.048.

    Article  Google Scholar 

  8. TOUTANJI H, BALAGURU P. Durability characteristics of concrete columns wrapped with FRP tow sheets [J]. Journal of Materials in Civil Engineering, 1998, 10(1): 52–57. DOI: 10.1061/(ASCE)0899-1561(1998)10:1(52).

    Article  Google Scholar 

  9. OMBRES L. Debonding analysis of reinforced concrete beams strengthened with fibre reinforced cementitious mortar [J]. Engineering Fracture Mechanics, 2012, 81: 94–109. DOI: 10.1016/j.engfracmech.2011.06.012.

    Article  Google Scholar 

  10. BOURNAS D A, PAVESE A, TIZANI W. Tensile capacity of FRP anchors in connecting FRP and TRM sheets to concrete [J]. Engineering Structures, 2015, 82: 72–81. DOI: 10.1016/j.engstruct.2014.10.031.

    Article  Google Scholar 

  11. KOUTAS L, PITYTZOGIA A, TRIANTAFILLOU T C, BOUSIAS S N. Strengthening of infilled reinforced concrete frames with TRM: Study on the development and testing of textile-based anchors [J]. Journal of Composites for Construction, 2014, 18(3): A4013015. DOI: 10.1061/(ASCE)CC.1943-5614.0000390.

    Article  Google Scholar 

  12. MECHTCHERINE V, LIEBOLDT M. Permeation of water and gases through cracked textile reinforced concrete [J]. Cement and Concrete Composites, 2011, 33(7): 725–734. DOI: 10.1016/j.cemconcomp.2011.04.001.

    Article  Google Scholar 

  13. YIN Shi-ping, LI Yao, JIN Zhe-yu, LI Peng-hao. Interfacial properties of textile-reinforced concrete and concrete in chloride freezing-and-thawing cycle [J]. ACI Materials Journal, 2018, 115(2): 197–208. DOI: 10.14359/51701919.

    Article  Google Scholar 

  14. ASKOUNI P D, PAPANICOLAOU C G. Experimental investigation of bond between glass textile reinforced mortar overlays and masonry: The effect of bond length [J]. Materials and Structures, 2017, 50(2), 164: 1–15. DOI: 10.1617/s11527-017-1033-7.

    Article  Google Scholar 

  15. RAOOF S, KOUTAS L N, BOURNAS D A. Bond between textile-reinforced mortar (TRM) and concrete substrates: Experimental investigation [J]. Composites Part B-Engineering, 2016, 98: 350–361. DOI: 10.1016/j.compositesb.2016.05.041.

    Article  Google Scholar 

  16. D’AMBRISI A, FEO L, FOCACCI F. Bond-slip relations for PBO-FRCM materials externally bonded to concrete [J]. Composites Part B-Engineering, 2012, 43(8): 2938–2949. DOI: 10.1016/j.compositesb.2012.06.002.

    Article  Google Scholar 

  17. D’AMBRISI A, FEO L, FOCACCI F. Experimental and analytical investigation on bond between carbon-FRCM materials and masonry [J]. Composites Part B-Engineering, 2013, 46(3): 15–20. DOI: 10.1016/j.compositesb.2012.10.018.

    Article  Google Scholar 

  18. YIN Shi-ping, XU Shi-lang, LI He-dong. Improved mechanical properties of textile reinforced concrete thin plate [J]. Journal of Wuhan University of Technology-Materials Science Edition, 2013, 28(1): 92–98. DOI: 10.1007/s11595-013-0647-z.

    Article  Google Scholar 

  19. PELED A. Confinement of damaged and nondamaged structural concrete with FRP and TRC sleeves [J]. Journal of Composites for Construction, 2007, 11(5): 514–522. DOI: 10.1061/(ASCE)1090-0268(2007)11:5(514).

    Article  Google Scholar 

  20. TUAKTA C, BÜYÜKÜZTÜRK O. Conceptual model for prediction of FRP-concrete bond strength under moisture cycles [J]. Journal of Composites for Construction, 2011, 15(5): 743–756. DOI: 10.1061/(ASCE)CC.1943-5614.000021.

    Article  Google Scholar 

  21. LI Yue, LIU Xiong-fei, LI Jia-qi. Bond properties of FRP-concrete interface with nano-modified epoxy resin under wet-dry cycles [J]. KSCE Journal of Civil Engineering, 2017, 21(4): 1379–1385. DOI: 10.1007/s12205-016-0921-7.

    Article  Google Scholar 

  22. LIANG Hong-jun, LI Shan, LU Yi-yan, YANG Ting. The combined effects of wet-dry cycles and sustained load on the bond behavior of FRP-concrete interface [J]. Polymer Composites, 2019, 40(3): 1006–1017. DOI: 10.1002/pc. 24785.

    Article  Google Scholar 

  23. ORTLEPP R, CURBACH M. Bonding behavior of textile reinforced concrete strengthening [C]//NAAMAN A E, REINHARDT H W, eds. Fourth International Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC4). France: RILEM Publications, 2003: 517–527.

    Google Scholar 

  24. ORTLEPP R, HAMPEL U, CURBACH M. A new approach for evaluating bond capacity of TRC strengthening [J]. Cement & Concrete Composites, 2006, 28(7): 589–597. DOI: 10.1016/j.cemeoncomp.2006.05.003.

    Article  Google Scholar 

  25. XUN Yong, XIAO Bao-hui, ZHANG Qin. Experimental study on interfaces bond behavior of textile reinforced concrete (TRC) with RC component [J]. Sichuan Build Sci, 2011, 37(4): 55–59. (in Chinese)

    Google Scholar 

  26. POURASEE A, PELED A, WEISS J. Fluid transport in cracked fabric-reinforced-cement-based composites [J]. Journal of Materials in Civil Engineering, 2011, 23(8): 1227–1238. DOI: 10.1061/(ASCE)MT.1943-5533.0000289.

    Article  Google Scholar 

  27. YIN Shi-ping, XU Shi-lang, WANG Fei. Investigation on the flexural behavior of concrete members reinforced with epoxy resin-impregnated textiles [J]. Materials and Structures, 2015, 48(1, 2): 153–166. DOI: 10.1617/s11527-013-0174-6.

    Article  Google Scholar 

  28. XU Shi-lang, SHEN Ling-hua, WANG Ji-yang, FU Ye. High temperature mechanical performance and micro interfacial adhesive failure of textile reinforced concrete thin-plate [J]. Journal of Zhejiang University-Science A, 2014, 15(1): 31–38. DOI: 10.1631/jzus.A1300150.

    Article  Google Scholar 

  29. LI He, XU Shi-lang. Development and optimization of cementitious matrices for textile reinforced concrete [J]. Journal of Hydroelectric Engineering, 2006, 25(3): 72–76. (in Chinese)

    Google Scholar 

  30. NAGAMOTO N, OZAWA K. Mixture proportions of self-compacting high-performance concrete [C]// Highperformance Concrete: Design and Materials and Advances in Concrete Technology, ACI SP-172. 1997: 623–636.

    Google Scholar 

  31. JULIO G R, JOSÉ M S, PEDRO F, JOSÉ X. Effect of dry-wet cycles on the bond behaviour of concrete elements strengthened with NSM CFRP laminate strips [J]. Composite Structures, 2015, 132(12): 331–340. DOI: 10.1016/j.compstruct.2015.05.053.

    Google Scholar 

  32. YU Yu-lin, YIN Shi-ping, NA Ming-wang. Bending performance of TRC-strengthened RC beams with secondary load under chloride erosion [J]. Journal of Central South University, 2019, 26(1): 196–206. DOI: 10.1007/s11771-019-3993-y.

    Article  Google Scholar 

  33. LI Yao, YIN Shi-ping, CHEN Wen-jie. Seismic behavior of corrosion-damaged RC columns strengthened with TRC under a chloride environment [J]. Construction and Building Materials, 2019, 201: 736–745. DOI: 10.1016/j.conbuildmat. 2019.01.009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-ping Yin PhD  (尹世平).

Additional information

Foundation item: Project(2017XKZD09) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yin, Sp. & Lv, Hl. Performance of interface between TRC and existing concrete under a chloride dry-wet cycle environment. J. Cent. South Univ. 27, 876–890 (2020). https://doi.org/10.1007/s11771-020-4338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4338-6

Key words

关键词

Navigation