Skip to main content
Log in

Effects of microstructural heterogeneity on fatigue properties of cast aluminum alloys

铸造铝合金中的组织异质性对其疲劳性能的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Cast Al alloys are widely employed for engine components, structural parts, gear box, chassis, etc. and subjected to mechanical cyclic load during operation. The accurate fatigue life prediction of these alloys is essential for normal operation as fatigue cracks initiated during operation induce the lubrication oil leak and serious safety hazard. Microstructural heterogeneity, including shrinkage/gaspores and secondary phase particles, is the most detrimental factor that affects fatigue life of cast Al alloys. The approximate fatigue life cycles could be estimated based on the size distribution and locations of shrinkage pores/defects. The relationship between crack population and stress was reported by statistical distributions and the cumulative probability for cast Al alloys fail at a certain stress could be predicted by combination of Paris law and pore size distribution. Pore depth was found to dominate the stress field around the pore on the surface and the maximum stress increases sharply when the pore intercepted with the surface at its top. The microstructure of cast Al alloys usually is composed of primary Al dendrites, eutectic silicon, Fe-rich particles and other intermetallic particles are dependent upon alloy composition and heat treatment. The coalescence of microcracks initiated from the fractured secondary phases was clearly found and can accelerate the initiation and propagation of the fatigue cracks. A link between defect features and the fatigue strength needs to be established through a good understanding of the fatigue damage mechanisms associated with the microstructural features under specific loading conditions. This paper reviews the influences of shrinkage/gaspores and secondary phase particles, formed during casting process, on the fatigue life of Al-Si-Mg cast Al alloys.

摘要

铸造铝合金材料被广泛应用于发动机部件、结构材料、齿轮箱、底盘等部件, 在使用过程中承 受交变应力。准确预测铸铝材料的使用寿命对于部件的安全运转极为重要, 因疲劳裂纹而导致的漏油 等事故可能产生极为危险的后果。铸铝材料的使用寿命可以通过其铸造缩/气孔的尺寸分布或者尺寸最 大的缩/气孔的直径结合裂纹扩展速率公式进行预测。缩孔的深度及相对位置对于应力集中具有重要影 响。通常情况下, 铸造铝合金的组织主要包括铝基体、共晶硅、富铁相及其他一些第二相颗粒。因这 些第二相颗粒开裂而产生的微裂纹会导致铸铝材料疲劳寿命的降低。因此, 如何通过显微组织合理预 测铸铝材料的疲劳寿命对于铸铝材料的使用极为重要。本文回顾了以往研究中铸造缩/气孔和第二相颗 粒等组织缺陷对Al-Si-Mg 铸造铝合金疲劳寿命的影响。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488(7411): 294–303.

    Article  Google Scholar 

  2. ZINKLE S J, WAS G S. Materials challenges in nuclear energy [J]. Acta Mater, 2013, 61(3): 735–758.

    Article  Google Scholar 

  3. BERANGER M, FIARD J M, AMMAR K, CAILLETAUD G. A new fatigue model including thermal ageing for low copper aluminum-silicon alloys [J]. Procedia Engineering, 2018, 213: 720–729.

    Article  Google Scholar 

  4. PRASAD S V, ASTHANA R. Aluminum metal-matrix composites for automotive applications: Tribological considerations [J]. Tribology Letters, 2004, 17(3): 445–453.

    Article  Google Scholar 

  5. IMMARIGEON J, ZHAO L, WALLACE W J. Lightweight materials for aircraft applications [J]. Materials Characterization, 1995, 35(1): 41–67.

    Article  Google Scholar 

  6. RIOJA R J. Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications [J]. Materials Science & Engineering A, 1998, 257(1): 100–107.

    Article  Google Scholar 

  7. SONSINO C M. Structural durability of cast aluminium gearbox housings of underground railway vehicles under variable amplitude loading [J]. International Journal of Fatigue, 2005, 27(8): 944–953.

    Article  MATH  Google Scholar 

  8. DIXON B, MOLENT L, BARTER S. A study of fatigue variability in aluminium alloy 7050-T7451 [J]. International Journal of Fatigue, 2016, 92: 130–146.

    Article  Google Scholar 

  9. ÖZDES H, TIRAKIOGLU M. On the relationship between structural quality index and fatigue life distributions in aluminum aerospace castings [J]. Metals, 2016, 6(4): 81–91.

    Article  Google Scholar 

  10. OSMOND P, LE V D, VIET-DUC, MOREL F, BELLETT D, SAINTIER N. Effect of porosity on the fatigue strength of cast aluminium alloys: From the specimen to the structure [J]. Procedia Engineering, 2018, 213: 630–643.

    Article  Google Scholar 

  11. HOURIA M I, NADOT Y, FATHALLAH R, ROY M, MAIJER D M. Influence of casting defect and SDAS on the multiaxial fatigue behaviour of A356-T6 alloy including mean stress effect [J]. International Journal of Fatigue, 2015, 80: 90–102.

    Article  Google Scholar 

  12. LE V D, MOREL F, BELLETT D, SAINTIER N, OSMOND P. Multiaxial high cycle fatigue damage mechanisms associated with the different microstructural heterogeneities of cast aluminium alloys [J]. Materials Science & Engineering A, 2016, 649(1): 426–440.

    Article  Google Scholar 

  13. KOUTIRI I, BELLETT D, MOREL F, PESSARD E. A probabilistic model for the high cycle fatigue behaviour of cast aluminium alloys subject to complex loads [J]. International Journal of Fatigue, 2013, 47: 137–147.

    Article  Google Scholar 

  14. ROTELLA A, NADOT Y, AUGUSTIN R, PIELLARD M, L’HERITIER S. Defect size map for cast A357-T6 component under multiaxial fatigue loading using the defect stress gradient (DSG) criterion [J]. Engineering Fracture Mechanics, 2016, 174: 227–242.

    Article  Google Scholar 

  15. WU Sheng-chuan, XIAO Ti-qiao, WITHERS P J. The imaging of failure in structural materials by synchrotron radiation X-ray microtomography [J]. Engineering Fracture Mechanics, 2017, 182: 127–156.

    Article  Google Scholar 

  16. ASTM, E155-15. Standard reference radiographs for inspection of aluminum and magnesium castings[M]. West Conshohocken, PA: ASTM International, 2015.

    Google Scholar 

  17. LAMPMAN S R. ASM handbook: Volume 19, fatigue and fracture [M]. Park, Ohio: Materials, ASM International, 1996.

    Google Scholar 

  18. MUGHRABI H. Dislocations and properties of real materials [M]. London: The Institute of Metals, 1985: 244.

    Google Scholar 

  19. BASQUIN O. The exponential law of endurance tests [C]// Proc Am Soc Test Mater. 1910: 625–630.

    Google Scholar 

  20. SHIGLEY J E, MISCHKE C R. Mechanical engineering design [M]. Singapore: McGraw-Hill, 1989.

    Google Scholar 

  21. JUVINALL R C, MARSHEK K M. Fundamentals of machine component design [M]. New Jersey, US: Wiley, 1991.

    Google Scholar 

  22. DOWLING N E. Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue [M]. New Jersey: Prentice Hall, 2012.

    Google Scholar 

  23. COFFIN L F. A study of the effects of cyclic thermal stresses on a ductile metal [J]. Transactions of the American Society of Mechanical Engineers, 1954, 76: 931–950.

    Google Scholar 

  24. MANSON S S. Fatigue: A complex subject-Some simple approximations [J]. Experimental Mechanics, 1965, 5: 193–226.

    Article  Google Scholar 

  25. MITCHELL M. Fundamentals of modern fatigue analysis for design [C]// Fratigue and Fracture. Ohio: ASM internationd, 1996: 227–249.

    Google Scholar 

  26. RAMBERG W, OSGOOD W R. Description of stress-strain curves by three parameters [R]. Washington, DC: NACA, 1943.

    Google Scholar 

  27. BAUMEL A, SEEGER T, BOLLER C. Materials data for cyclic loading: Supplement 1 [R]. Dutch: Elsevier Science Ltd, 1990.

    Google Scholar 

  28. NIESLONY A, DSOKI C E, KAUFMANN H, KRUG P. New method for evaluation of the Manson-Coffin-Basquin and Ramberg-Osgood equations with respect to compatibility [J]. Materialwissenschaft und Werkstofftechnik, 2008, 30(10, 11): 1967–1977.

    MATH  Google Scholar 

  29. RICHARD C, RICE M. SAE fatigue design handbook [M]. Warrendale (PA): SAE Publication, 1988.

    Google Scholar 

  30. SKELTON R, MAIER H, CHRIST H J. The bauschinger effect, masing model and the Ramberg-Osgood relation for cyclic deformation in metals [J]. Materials Science and Engineering A, 1997, 238(2): 377–390.

    Article  Google Scholar 

  31. PARIS P C. A rational analytic theory of fatigue [J]. The Trend in Engineering, 1961, 13: 9.

    Google Scholar 

  32. NEWMAN J C. Review of modelling small-crack behavior and fatigue-life predictions for aluminum alloys [J]. Fatigue & Fracture of Engineering Materials & Structures, 1994, 17(4): 429–439.

    Article  Google Scholar 

  33. NEWMAN J C, EDWARDS P. Short-crack growth behaviour in an aluminum alloy-An AGARD cooperative test programme[M]. France: Advisory Group for Aerospace Research and Development Neuilly-Sur-Seine, 1988.

    Google Scholar 

  34. EDWARDS P, NEWMAN J C. Short-crack growth behaviour in various aircraft materials [R]. Washington, DC: NACA, 1990.

    Google Scholar 

  35. PEARSON S. Initiation of fatigue cracks in commercial aluminium alloys and the subsequent propagation of very short cracks [J]. Engineering Fracture Mechanics, 1975, 7(2): 235–247.

    Article  Google Scholar 

  36. HADDAD M H E, DOWLING N E, TOPPER T H, SMITH K N. Jintegral applications for short fatigue cracks at notches [J]. International Journal of Fracture, 1980, 16(1): 15–30.

    Article  Google Scholar 

  37. HIRONOBU N, KEN-ICHI T. Significance of initiation, propagation and closure of microcracks in high cycle fatigue of ductile metals [J]. Engineering Fracture Mechanics, 1981, 15(3, 4): 445–456.

    Article  Google Scholar 

  38. NEWMAN J C. A nonlinear fracture mechanics approach to the growth of small cracks [R]. Virgina: NASA Langley Research Center, 1983.

    Google Scholar 

  39. TING J C, LAWRENCE F V. Modeling the long-life fatigue behavior of a cast aluminum alloy [J]. Fatigue & Fracture of Engineering Materials & Structures, 1993, 16(6): 631–647.

    Article  Google Scholar 

  40. PARK S K, LAWRENCE F V. A long-life regime probability-based fatigue design method for weldments [R]. Illinois: University of Illinois at Urbana-Champaign, 1988.

    Google Scholar 

  41. MANSON S S. Behavior of materials under conditions of thermal stress, national advisory committee for aeronautics [R]. NACA TN-2933, 1954.

    Google Scholar 

  42. DANG-VAN K. Macro-micro approach in high-cycle multiaxial fatigue [C]// Advances in Multiaxial Fatigue. ASTM International, 1993: 120–130.

    Google Scholar 

  43. SINES G. Behavior of metals under complex static and alternating stresses [J]. Metal Fatigue, 1959, 1: 145–169.

    Google Scholar 

  44. CHARKALUK E, CONSTANTINESCU A, MAITOURNAM H, VAN K D. Revisiting the Dang Van criterion [J]. Procedia Engineering, 2009, 1(1): 143–146.

    Article  Google Scholar 

  45. BROWN M, MILLER K. Two decades of progress in the assessment of multiaxial low-cycle fatigue life [C]// Low-cycle Fatigue and Life Prediction. ASTM International, 1982.

    Google Scholar 

  46. WANG C H, BROWN M W. A path-independent parameter for fatigue under proportional and non-proportional loading [J]. Fatigue & Fracture of Engineering Materials & Structures, 1993, 16(12): 1285–1297.

    Article  Google Scholar 

  47. LIU K. A method based on virtual strain-energy parameters for multiaxial fatigue life prediction [C]// Advances in Multiaxial Fatigue. ASTM International, 1993: 67–84.

    Google Scholar 

  48. GLINKA G, WANG G. A. Plumtree, mean stress effects in multiaxial fatigue [J]. Fatigue & Fracture of Engineering Materials & Structures, 1995, 18: 755–764.

    Article  Google Scholar 

  49. KAMAL M, RAHMAN M M. Advances in fatigue life modeling: A review [J]. Renewable & Sustainable Energy Reviews, 2018, 82(1): 940–949.

    Article  Google Scholar 

  50. LAMPAN S. Casting design and performance [M]. Materials Park, Ohio: ASM International, 2009: 165.

    Google Scholar 

  51. RAO P N. Manufacturing technology [M]. New York: Tata McGraw- Hill Education, 2013.

    Google Scholar 

  52. PRILLHOFER B, BOTTCHER H, ANTREKOWITSCH H. Development and practical performance characteristics of a new impeller for metal treatment in casting/holding furnaces [C]// Light Metals, TMS Annual Meeting, 2009: 749–754.

    Google Scholar 

  53. AMMAR H R, SAMUEL A M, SAMUEL F H. Effect of casting imperfections on the fatigue life of 319-F and A356-T6 Al-Si casting alloys [J]. Materials Science and Engineering A, 2008, 473(1): 65–75.

    Article  Google Scholar 

  54. WANG Q G, APELIAN D, LADOS D A. Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects [J]. Journal of Light Metals, 2001, 1(1): 73–84.

    Article  Google Scholar 

  55. ZHANG Yuan-bing, XU Jian-hui, ZHAI Tong-guang. Distributions of pore size and fatigue weak link strength in an A713 sand cast aluminum alloy [J]. Materials Science and Engineering A, 2010, 527(16, 17): 3639–3644.

    Article  Google Scholar 

  56. PARIS P, ERDOGAN F J. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(4): 528–539.

    Article  Google Scholar 

  57. WANG Q G, CREPEAU P N, DAVIDSON C J, GRIFFITHS J R. Oxide films, pores and the fatigue lives of cast aluminum alloys [J]. Metallurgical and Materials Transactions B, 2006, 37(6): 887–895.

    Article  Google Scholar 

  58. TIRYAKIOGLU M. Statistical distributions for the size of fatigue-initiating defects in Al-7%Si-0.3%Mg alloy castings: A comparative study [J]. Materials Science and Engineering A, 2008, 497(1): 119–125.

    Article  Google Scholar 

  59. BARTER S, MOLENT L, GOLDSMITH N, JONES R. An experimental evaluation of fatigue crack growth [J]. Engineering Failure Analysis, 2005, 12(1): 99–128.

    Article  Google Scholar 

  60. MURAKAMI Y, ENDO M. Effects of defects, inclusions and inhomogeneities on fatigue strength [J]. International Journal of Fatigue, 1994, 16(3): 163–182.

    Article  Google Scholar 

  61. MURAKAMI Y. Metal fatigue: Effects of small defects and nonmetallic inclusions [M]. Dutch: Elsevier, 2002.

    Google Scholar 

  62. GNEDENKO B. Sur la distribution limite du terme maximum d’une serie aleatoire [J]. Annals of Mathematics, 1943, 44(3): 423–453.

    Article  MathSciNet  MATH  Google Scholar 

  63. JENKINSON A F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements [J]. Quarterly Journal of the Royal Meteorological Society, 1955, 81(348): 158–171.

    Article  Google Scholar 

  64. TIRYAKIOGLU M. On the size distribution of fracture-initiating defects in Al- and Mg-alloy castings [J]. Materials Science and Engineering A, 2008, 467(1, 2): 174–177.

    Article  Google Scholar 

  65. SHI G, ATKINSON H V, SELLARS C M, ANDERSON C W. Application of the generalized pareto distribution to the estimation of the size of the maximum inclusion in clean steels [J]. Acta Materialia, 1999, 47(5): 1455–1468.

    Article  Google Scholar 

  66. ATKINSON H V, SHI G. Characterization of inclusions in clean steels: A review including the statistics of extremes methods [J]. Progress in Materials Science, 2003, 48(5): 457–520.

    Article  Google Scholar 

  67. MAYER H, PAPAKYRIACOU M, ZETTL B, STANZLTSCHEGG S. Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys [J]. International Journal of Fatigue, 2003, 25(3): 245–256.

    Article  Google Scholar 

  68. NAYHUMWA C, GREEN N R, CAMPBELL J. Influence of casting technique and hot isostatic pressing on the fatigue of an Al-7Si-Mg alloy [J]. Metallurgical and Materials Transactions A, 2001, 32(2): 349–358.

    Article  Google Scholar 

  69. WANG Q, JONES P, OSBORNE M. The effects of applied pressure during solidification on the microstructure and mechanical properties of lost foam A356 castings [J]. Advances in Aluminum Casting Technology II, 2002, 10: 75–84.

    Google Scholar 

  70. PRZYSTUPA M A, BUCCI R J, MAGNUSEN P E, HINKLE A J. Microstructure based fatigue life predictions for thick plate 7050-T7451 airframe alloys [J]. International Journal of Fatigue, 1997, 19(93): 285–288.

    Article  Google Scholar 

  71. YI J Z, GAO Y X, LEE P D, FLOWER H M, LINDLEY T C. Scatter in fatigue life due to effects of porosity in cast A356-T6 aluminum-silicon alloys [J]. Metallurgical and Materials Transactions A, 2003, 34(9): 1879–1890.

    Article  Google Scholar 

  72. STEPHENS M A. Tests based on EDF statistics[M]// Goodness-of-Fit Techniques. New York: Marcel Dekker, 1986.

    Google Scholar 

  73. ASTM, E2283-08(2014). Standard practice for extreme value analysis of nonmetallic inclusions in steel and other microstructural features [S]. West Conshohocken, PA: ASTM International, 2014.

    Google Scholar 

  74. MAKKONEN L, RABB R, TIKANMAKI M. Size effect in fatigue based on the extreme value distribution of defects [J]. Materials Science and Engineering A, 2014, 594: 68–71.

    Article  Google Scholar 

  75. MAKKONEN L. Problems in the extreme value analysis [J]. Structural Safety, 2008, 30(5): 405–419.

    Article  Google Scholar 

  76. MAKKONEN M. Predicting the total fatigue life in metals [J]. International Journal of Fatigue, 2009, 31(7): 1163–1175.

    Article  Google Scholar 

  77. WALLIN K. Statistical aspects of fatigue life and endurance limit [J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(6): 333–344.

    Article  Google Scholar 

  78. XU Zhi-qiang, ZHANG Xin-liang, WANG Wei, ZHAI Tong-guang. Effect of pore position in depth on stress concentration around pore on sample surface [J]. Journal of Yansan University, 2012, 36(4): 293–297. (in Chinese)

    Google Scholar 

  79. ZHAI T. Strength distribution of fatigue crack initiation sites in an Al-Li alloy [J]. Metallurgical and Materials Transactions A, 2006, 37(10): 3139–3147.

    Article  Google Scholar 

  80. XU Zhi-qiang, WEN Wei, ZHAI Tong-guang. Effects of pore position in depth on stress/strain concentration and fatigue crack initiation [J]. Metallurgical and Materials Transactions A, 2012, 43: 2763–2770.

    Article  Google Scholar 

  81. ZHAI T, WILKINSON A J, MARTIN J W. A crystallographic mechanism for fatigue crack propagation through grain boundaries [J]. Acta Materialia, 2000, 48(20): 4917–4927.

    Article  Google Scholar 

  82. WANG L, DANIEWICZ S R, HORSTEMEYER M F, SINTAY S, ROLLETT A D. Three-dimensional finite element analysis using crystal plasticity for a parameter study of microstructurally small fatigue crack growth in a AA7075 aluminum alloy [J]. International Journal of Fatigue, 2009, 31(4): 651–658.

    Article  Google Scholar 

  83. SERRANO-MUNOZ I, BUFFIERE J Y, MOKSO R, VERDU C, NADOT Y. Location, location & size: Defects close to surfaces dominate fatigue crack initiation [J]. Scientific Reports, 2017, 7: 45239.

    Article  Google Scholar 

  84. BOZEK J E, HOCHHALTER J D, VEILLEUX M G, LIU M, HEBER G, SINTAY S D, ROLLETT A D, LITTLEWOOD D J, MANIATTY A M, WEILAND H, CHRIST R J, PAYNE J, WELSH G, HARLOW D G, WAWRZYNEK P A, INGRAFFEA A R. A geometric approach to modeling microstructurally small fatigue crack formation: I. Probabilistic simulation of constituent particle cracking in AA 7075-T651 [J]. Modelling and Simulation in Materials Science and Engineering, 2008, 16(6): 065007.

    Article  Google Scholar 

  85. PANG H T, REED P A S. Fatigue crack initiation and short crack growth in nickel-base turbine disc alloys-The effects of microstructure and operating parameters [J]. International Journal of Fatigue, 2003, 25: 1089–1099.

    Article  Google Scholar 

  86. FAN J, MCDOWELL D L, HORSTEMEYER M F, GALL K. Cyclic plasticity at pores and inclusions in cast Al-Si alloys [J]. Engineering Fracture Mechanics, 2003, 70: 1281–1302.

    Article  Google Scholar 

  87. GAO Y X, YI J Z, LEE P D, LINDLEY T. The effect of porosity on the fatigue life of cast aluminium-silicon alloys [J]. Fatigue & Fracture of Engineering Materials & Structures, 2004, 27: 559–570.

    Article  Google Scholar 

  88. LI P, LEE P D, MAIJER D M, LINDLEY T C. Quantification of the interaction within defect populations on fatigue behavior in an aluminum alloy [J]. Acta Materialia, 2009, 57: 3539–3548.

    Article  Google Scholar 

  89. HENAFF G, MARCHAL K, PETIT J. On fatigue crack propagation enhancement by a gaseous atmosphere: Experimental and theoretical aspects [J]. Acta Metallurgicaurgica et Materialia, 1995, 43: 2931–2942.

    Article  Google Scholar 

  90. GASQUERES C, SARRAZIN-BAUDOUX C, PETIT J, DUMONT D. Fatigue crack propagation in an aluminium alloy at 223 K [J]. Scripta Materialia, 2005, 53: 1333–1337.

    Article  Google Scholar 

  91. PETIT J, SARRAZIN-SARRAZIN C. Some critical aspects of low rate fatigue crack propagation in metallic materials, An overview on the influence of the atmosphere environment on ultra-high-cycle fatigue and ultra-slow fatigue crack propagation [J]. International Journal of Fatigue, 2006, 28: 1471–1478.

    Article  MATH  Google Scholar 

  92. PETIT J, SARRAZIN-SBAUDOUX C. Some critical aspects of low rate fatigue crack propagation in metallic materials [J]. International Journal of Fatigue, 2010, 32(6): 962–970.

    Article  Google Scholar 

  93. RICHARD S C, GASQUERES SARRAZIN-SBAUDOUX C, PETIT J. Coupled influence of microstructure and atmosphere environment on fatigue crack path in new generation Al alloys [J]. Engineering Fracture Mechanics, 2010, 77(11): 1941–1952.

    Article  Google Scholar 

  94. CHAPMAN T P, KAREH K M, KNOP M, CONNOLLEY T, LEE P D, AZEEM M A, RUGG D, LINDLEY D, DYE D. Characterisation of short fatigue cracks in titanium alloy IMI 834 using X-ray microtomography [J]. Acta Materialia, 2015, 99: 49–62.

    Article  Google Scholar 

  95. SERRANO-MUNOZ I, BUFFIERE J Y, VERDU C, GAILLARD Y, MU P, NADOT Y. Influence of surface and internal casting defects on the fatigue behaviour of A357-T6 cast aluminium alloy [J]. International Journal of Fatigue, 2016, 82: 361–370.

    Article  Google Scholar 

  96. BILLAUDEAU T, NADOT Y. Support for an environmental effect on fatigue mechanisms in the long life regime [J]. International Journal of Fatigue, 2004, 26: 839–847.

    Article  Google Scholar 

  97. MALLICK P K. 2-advanced materials for automotive applications: An overview [M]. Cambridge, UK: Woodhead Pubishing, 2012.

    Google Scholar 

  98. KAUFMAN J G. Understanding wrought and cast aluminum alloy designations [R]. NASA, 2013.

    Google Scholar 

  99. WANG Q G, CACERES C H. On the strain hardening behaviour of Al-Si-Mg casting alloys [J]. Materials Science and Engineering A, 1997, 234-236: 106–109.

    Article  Google Scholar 

  100. CACERES C H, DAVIDSON C J, GRIFFITHS J R. The deformation and fracture behaviour of an Al-Si-Mg casting alloy [J]. Materials Science and Engineering A, 1995, 197: 171–179.

    Article  Google Scholar 

  101. CACERES C H, GRIFFITHS J R, REINER P. The influence of microstructure on the Bauschinger effect in an Al-Si-Mg casting alloy [J]. Acta Materialia, 1996, 44: 15–23.

    Article  Google Scholar 

  102. JIAO Yi-nan, ZHANG Yi-fan, MA Shi-qing, SANG De-li, ZHANG Yang, ZHAO Jin-jin, LIU Yong-qiang, YANG Shao-pu. Role of secondary phase particles in fatigue behavior of high-speed railway gearbox material [J]. International Journal of Fatigue, 2020, 131: 105336.

    Article  Google Scholar 

  103. WANG Q G, DAVIDSON C J. Solidification and precipitation behaviour of Al-Si-Mg casting alloys [J]. Journal of Materials Science, 2001, 36: 739–750.

    Article  Google Scholar 

  104. WANG Q G, APELIAN D, LADOS D A. Fatigue behavior of A356/357 aluminum cast alloys. Part II-Effect of microstructural constituents [J]. Journal of Light Metals, 2001, 1: 85–97.

    Article  Google Scholar 

  105. ODANOVIC Z, DURDEVIC M, PAVLOVIC J K, ARSIC M, KATAVIC B. Some applications of the image analysis in the metal material science [J]. Acta Physica Polonica A, 2012, 121: 111–113.

    Article  Google Scholar 

  106. DEZECOT S, BUFFIERE J Y, KOSTER A, MAUREL V, SZMYTKA F, CHARKALUK E, DAHDAH N, El BARTALI A, LIMODIN N, WITZ N. In situ 3D characterization of high temperature fatigue damage mechanisms in a cast aluminum alloy using synchrotron X-ray tomography [J]. Scripta Materialia, 2016, 113: 254–258.

    Article  Google Scholar 

  107. WANG Q G, CARLOS H, CACERES C H. Mg effects on the eutectic structure and tensile properties of Al-Si-Mg alloys [J]. Materials Science Forum, 1997, 242: 159–164.

    Article  Google Scholar 

  108. CACERES C H, GRIFFITHS J R. Damage by the cracking of silicon particles in an Al-7Si-0.4Mg casting alloy [J]. Acta Materialia, 1996, 44(1): 25–33.

    Article  Google Scholar 

  109. BROWN L M. Back-stresses, image stresses, and workhardening [J]. Acta Materialia, 1973, 21: 879–885.

    Article  Google Scholar 

  110. BOILEAU J M, ALLISON J E. The effect of solidification time and heat treatment on the fatigue properties of a cast 319 aluminum alloy [J]. Metallurgical and Materials Transactions A, 2003, 34(9): 1807–1820.

    Article  Google Scholar 

  111. WANG Q, CACERES C, GRIFFITHS J. Cracking of Fe-rich intermetallics and eutectic Si particles in an Al-7Si-0.7 Mg casting alloy [J]. Transactions of the American Foundrymen’s Society, 1998, 106: 131–136.

    Google Scholar 

  112. WANG Q G, CACERES C H. The fracture mode in Al-Si-Mg casting alloys [J]. Materials Science and Engineering A, 1998, 214(1, 2): 72–82.

    Article  Google Scholar 

  113. NADOT Y, IBEN HOURIA M I, FATHALAH R, MAIJER D. Through process modelling applied to the fatigue resistance of cast aluminum [J]. Procedia Engineering, 2018, 213: 296–302.

    Article  Google Scholar 

  114. CACERES C H, DAVIDSON C J, GRIFFITHS J R, WANG Q G. The effect of Mg on the microstructure and mechanical behavior of Al-Si-Mg casting alloys [J]. Metallurgical and Materials Transactions A, 1999, 30(10): 2611–2618.

    Article  Google Scholar 

  115. WANG Q G, CACERES C H, GRIFFITHS J R. Damage by eutectic particle cracking in aluminum casting alloys A356/357 [J]. Metallurgical and Materials Transactions A, 2003, 34(12): 2901–2912.

    Article  Google Scholar 

  116. CHAN K S, JONES P, WANG Q. Fatigue crack growth and fracture paths in sand cast B319 and A356 aluminum alloys [J]. Materials Science and Engineering A, 2003, 341: 18–34.

    Article  Google Scholar 

  117. DYE D, STONE H J, REED R C. Intergranular and interphase microstresses [J]. Current opinion in Solid State and Materials Science, 2001, 5(1): 31–37.

    Article  Google Scholar 

  118. CHO K, GURLAND J. The law of mixtures applied to the plastic deformation of two-phase alloys of coarse microstructures [J]. Metallurgical Transactions A, 1988, 19(8): 2027–2040.

    Article  Google Scholar 

  119. BYUN T S, KIM I S. Stress and strain partition in elastic and plastic deformation of two phase alloys [J]. Journal of Materials Science, 1991, 26: 3917–3925.

    Article  Google Scholar 

  120. ARGON A, IM J, SAFOGLU R. Cavity formation from inclusions in ductile fracture [J]. Metallurgical and Materials Transactions A, 1975, 6(4): 825–837.

    Article  Google Scholar 

  121. GELL M, WORTHINGTON P J. The plastic deformation and fracture of Iron-3% Silicon in the temperature range 295 K- 473 K [J]. Acta Materialia, 1996, 14: 1265–1271.

    Article  Google Scholar 

  122. BARNBY J T. The initiation of ductile failure by fractured carbides in an austenitic stainless steel [J]. Acta Metallurgica, 1967, 15: 903–909.

    Article  Google Scholar 

  123. LASSANCE D, FABREGUE D, DELANNAY F, PARDOEN T. Micromechanics of room and high temperature fracture in 6xxx Al alloys [J]. Progress in Materials Science, 2007, 52(1): 62–129.

    Article  Google Scholar 

  124. JIAO Y, ZHENG W, KISH J R. Stress corrosion cracking susceptibility of thermally-aged Type 310S stainless steels in supercritical water [J]. Corrosion Science, 2018, 135: 1–11.

    Article  Google Scholar 

  125. LEE J, EARMME Y, AARONSON H, RUSSELL K. Plastic relaxation of the transformation strain energy of a misfitting spherical precipitate: Ideal plastic behavior [J]. Metallurgical and Materials Transactions A, 1980, 11(11): 1837–1847.

    Article  Google Scholar 

  126. BROCHU M, VERREMAN Y, AJERSCH F, BUCHER L. Fatigue behavior of semi-solid cast aluminum: A critical review [J]. Solid State Phenomena, 2008, 141: 725–730.

    Article  Google Scholar 

  127. CHAN K S. Roles of microstructure in fatigue crack initiation [J]. International Journal of Fatigue, 2010, 32(9): 1428–1447.

    Article  Google Scholar 

  128. WU S C, HU Y, DUAN H, YU C, JIAO H. On the fatigue performance of laser hybrid welded high Zn 7000 alloys for next generation railway components [J]. International Journal of Fatigue, 2016, 91: 1–10.

    Article  Google Scholar 

  129. WU S C, YU C, YU P S, BUFFIERE J, HELFEN L, FU Y. Corner fatigue cracking behavior of hybrid laser AA7020 welds by synchrotron X-ray computed microtomography [J]. Materials Science and Engineering A, 2016, 651: 604–614.

    Article  Google Scholar 

  130. LIU Y L, KANG S B, KIM H W. The complex microstructures in an as-cast Al-Mg-Si alloy [J]. Mater Lett, 1999, 41(6): 267–272.

    Article  Google Scholar 

  131. MOUSTAFA M A, SAMUEL F H, DOTY H W. Effect of solution heat treatment and additives on the microstructure of Al-Si (A413.1) automotive alloys [J]. Journal of Materials Science, 2003, 38(22): 4507–4522.

    Article  Google Scholar 

  132. LADOS D A, APELIAN D. Fatigue crack growth characteristics in cast Al-Si-Mg alloys: Part I. Effect of processing conditions and microstructure [J]. Materials Science and Engineering A, 2004, 385: 200–211.

    Google Scholar 

  133. DASGUPTA R, BROWN C, MAREK S. Analysis of overmodified 356 aluminum alloy [J]. AFS Trans, 1988, 96: 297–310.

    Google Scholar 

  134. ARGO D, GRUZLESKI J. Porosity in modified aluminum alloy castings [J]. AFS Transactions, 1988, 96: 65–74.

    Google Scholar 

  135. LEE P D, SRIDHAR S. Direct observation of the effect of strontium on porosity formation during the solidification of aluminium-silicon alloys [J]. International Journal of Cast Metals Research, 2000, 13(4): 185–198.

    Article  Google Scholar 

  136. MOUSTAFA M A, SAMUEL F H, DOTY H W, VALTIERRA S. Effect of Mg and Cu additions on the microstructural characteristics and tensile properties of Sr-modified Al-Si eutectic alloys [J]. International Journal of Cast Metals Research, 2002, 14(4): 235–253.

    Article  Google Scholar 

  137. ZANDBERGEN H, ANDERSEN S, JANSEN J. Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies [J]. Science, 1997, 227: 1221–1225.

    Article  Google Scholar 

  138. JOENOES A, GRUZLESKI J. Magnesium effects on the microstructure of unmodified and modified Al-Si alloys [J]. Cast Metals, 1991, 4: 62–71.

    Article  Google Scholar 

  139. SIMENSEN C J, ROLFSEN T L. Production of π-AlMgSiFe crystals [J]. Zeitschrift für Metallkunde, 1997, 88: 142–146.

    Google Scholar 

  140. TAN Y H, LEE S L, LIN Y L. Effects of Be and Fe additions on the microstructure and mechanical properties of A357.0 alloys [J]. Metallurgical and Materials Transactions A, 1995, 26: 1195–1205.

    Article  Google Scholar 

  141. SAMUEL F, SAMUEL A, DOTY H. Factors controlling the type and morphology of Cu-Containing phases in 319 Al alloy (96-30) [J]. Transactions of the American Foundrymen’s Society, 1996, 104: 893–902.

    Google Scholar 

  142. MIAO W, LAUGHLIN D. Effects of Cu content and preaging on precipitation characteristics in aluminum alloy 6022 [J]. Metallurgical and Materials Transactions A, 2000, 31: 361–371.

    Article  Google Scholar 

  143. SHIH T S, SHIH F S. Effects of silicon, magnesium and strontium content on the qualities of Al-Si-Mg alloys [J]. Journal of Cast Metals Research, 1998, 10: 273–282.

    Article  Google Scholar 

  144. SINGH R, GANGULY R, DHINDAW B. Application of statistical design of experiments for quantitatively studying the strengthening characteristics of cast Al-Si-Cu-Mg alloys [J]. British Foundryman, 1984, 77: 436–440.

    Google Scholar 

  145. TASH M, SAMUEL F, MUCCIARDI F, DOTY H, VALTIERRA S. Experimental correlation between metallurgical parameters and hardness in heat-treated 319 alloys: A quantitative study using factorial analysis [J]. Transactions of the American Foundry Society, 2006, 114: 71–84.

    Google Scholar 

  146. BUDIANSKY B, HUTCHINSON J, SLUTSKY S. Mechanics of solids [M]. Oxford, UK: Pergamon Press, 1982.

    MATH  Google Scholar 

  147. PARDOEN T, HUTCHINSON J. An extended model for void growth and coalescence [J]. Journal of the Mechanics and Physics of Solids, 2000, 48: 2467–2512.

    Article  MATH  Google Scholar 

  148. GOGOGANU M, LEBLOND J B, DEVAUX J. Approximate models for ductile metals containing non-spherical voids—Case of axisymmetric prolate ellipsoidal cavities [J]. Journal of the Mechanics and Physics of Solids, 1993, 41: 1723–1754.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-jin Zhao PhD  (赵晋津), Sheng-chuan Wu PhD  (吴圣川), Yong-qiang Liu PhD  (刘永强) or Shao-pu Yang PhD  (杨绍普).

Additional information

Foundation item: Projects(11790282, U1534204, 11572267, 51804202, 51705344) supported by the National Natural Science Foundation of China; Project(E2019210292) supported by the Natural Science Foundation of Hebei Province, China; Project(A2019210204) supported by the National Natural Science Foundation for Distinguished Young Scholars, China; Project(KQTD20170810160424889) supported by the Shenzhen Peacock Team Program, China; Project(2019DB013) supported by the Key Research Project of Southern Xinjiang, China; Project(C201821) supported by the High Level Talent Support Project in Hebei, China; Project supported by the Youth Top-notch Talents Supporting Plan of Hebei Province, China; Project(MCMS-E-0519G04) supported by the State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, China; Project(201919) supported by the Open Fund of State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Yn., Zhang, Yf., Ma, Sq. et al. Effects of microstructural heterogeneity on fatigue properties of cast aluminum alloys. J. Cent. South Univ. 27, 674–697 (2020). https://doi.org/10.1007/s11771-020-4323-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4323-0

Key words

关键词

Navigation