Skip to main content
Log in

Mechanical and electrical properties of coarse-grained soil affected by cyclic freeze-thaw in high cold regions

冻融循环作用下高寒地区粗粒土的力学和电学特性

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To evaluate the geotechnical properties of coarse-grained soil affected by cyclic freeze-thaw, the electrical resistivity and mechanical tests are conducted. The soil specimens are prepared under different water contents, dry densities and exposed to 0-20 freeze-thaw cycles. As a result, the stress-strain behavior of the specimen (w =14.0% and ρd=1.90 g/cm3) changes from strain-hardening into strain-softening due to the freeze-thaw effect. The electrical resistivity of test specimen increases with the freeze-thaw cycles change, but the mechanical parameters (the unconfined compressive strength qu and the deformation modulus E) and brittleness index decrease considerably at the same conditions. All of them tend to be stable after 7−9 cycles. Moreover, both the dry density and the water content have reciprocal effects on the freeze-thaw actions. The failure and pore characteristics of specimens affected by freeze-thaw cycles are discussed by using the image analysis method. Then, an exponential function equation is developed to assess the electrical resistivity of specimens affected by the cyclic freeze-thaw. Linear relations between the mechanical parameters and the electrical resistivity of specimens are established to evaluate the geotechnical properties of the soil exposed to freeze-thaw actions through the corresponding electrical resistivity.

摘要

为评价冻融影响下高寒地区粗粒土的工程特性, 对不同干密度(ρd=1.90 g/cm3, 2.00 g/cm3, 2.15 g/cm3)、不同含水率(w=9.0%, 11.5%, 14.0%)的粗粒土在不同冻融循环(C=0~20 次)下电学和单轴 力学特性进行试验研究。结果表明, 循环冻融作用下, 低密度、高含水(ρd=1.9 g/cm3, w=14.0%)试样 的应力-应变关系从应变硬化型向软化型过渡。随着冻融循环次数的增加, 试样的电阻率(ρ)呈增长趋 势, 而单轴力学特性(单轴抗压强度qu、变形模量E)和脆性指标(IB)均显著衰减, 在7~9 次循环后趋于 稳定。此外, 冻融循环对试样的影响还受干密度和含水率的交互作用。采用图像法深入分析了冻融作 用下粗粒土的剪切破坏和孔隙结构特征。在修正的Archie 模型的基础上, 提出了考虑冻融影响的非饱 和含粘粒粗粒土的电阻率模型来评价试样电学特性的冻融效应。最后, 建立了冻融粗粒土的单轴抗压 强度、变形模量和电阻率的关系, 对基于无损的电阻率法评价冻融粗粒土力学特性具有重要意义。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHO Y C, SONG Y S. Deformation measurements and a stability analysis of the slope at a coal mine waste dump [J]. Ecological Engineering, 2014, 68: 189–199. DOI: 10.1016/ j.ecoleng.2014.03.005.

    Article  Google Scholar 

  2. KONER R, CHAKRAVARTY D. Characterisation of overburden dump materials: A case study from the Wardha valley coal field [J]. Bulletin of Engineering Geology and the Environment, 2016, 75(3): 1311–1323. DOI: 10.1007/s10064-015-0830-x.

    Article  Google Scholar 

  3. ZHOU Zhong, XING Kai, YANG Hao, WANG Hao. Damage mechanism of soil-rock mixture after freeze-thaw cycles [J]. Journal of Central South University, 2019, 26(1): 13–24. DOI: 10.1007/s11771-019-3979-9.

    Article  Google Scholar 

  4. BEHERA P K, SARKAR K, SINGH A K, VERMA A K, SINGH T N. Dump slope stability analysis-A case study [J]. Journal of the Geological Society of India, 2016, 88(6): 725–735. DOI: 10.1007/s12594-016-0540-4.

    Article  Google Scholar 

  5. JONCZY I, GAWOR Ł. Coal mining and post-metallurgic dumping grounds and their connections with exploitation of raw materials in the region of RudaŚląska [J]. Archives of Mining Sciences, 2017, 62(2): 301–311. DOI: 10.1515/amsc-2017-0023.

    Article  Google Scholar 

  6. NIU Fu-jun, CHENG Guo-dong, NI Wan-kui, JIN De-wu. Engineering-related slope failure in permafrost regions of the Qinghai-Tibet Plateau [J]. Cold Regions Science and Technology, 2005, 42(3): 215–225. DOI: 10.1016/j.cold regions.2005.02.002.

    Article  Google Scholar 

  7. LI Guo-yu, YU Qi-hao, MA Wei, CHEN Zhao-yu, MU Yan-hu, GUO Lei, WANG Fei. Freeze-thaw properties and long-term thermal stability of the unprotected tower foundation soils in permafrost regions along the Qinghai-Tibet power transmission line [J]. Cold Regions Science and Technology, 2016, 121: 258–274. DOI: 10.1016/j.coldregions.2015.05.004.

    Article  Google Scholar 

  8. VIKLANDER P. Permeability and volume changes in till due to cyclic freeze/thaw [J]. Canadian Geotechnical Journal, 1998, 35(3): 471–477. DOI: 10.1139/t98-015.

    Article  Google Scholar 

  9. QI Ji-lin, MA Wei, SONG Chun-xia. Influence of freeze-thaw on engineering properties of a silty soil [J]. Cold Regions Science and Technology, 2008, 53(3): 397–404. DOI: 10.1016/j.coldregions.2007.05.010.

    Article  Google Scholar 

  10. HANSSON K, LUNDIN L C. Equifinality and sensitivity in freezing and thawing simulations of laboratory and in situ data [J]. Cold Regions Science and Technology, 2006, 44(1): 20–37. DOI: 10.1016/j.coldregions.2005.06.004.

    Article  Google Scholar 

  11. GHAZAVI M, ROUSTAIE M. The influence of freeze-thaw cycles on the unconfined compressive strength of fiber-reinforced clay [J]. Cold Regions Science and Technology, 2010, 61(2, 3): 125–131. DOI: 10.1016/j.cold regions.2009.12.005.

    Article  Google Scholar 

  12. KAMEI T, AHMED A, SHIBI T. Effect of freeze-thaw cycles on durability and strength of very soft clay soil stabilized with recycled bassanite [J]. Cold Regions Science and Technology, 2012, 82: 124–129. DOI: 10.1016/ j.coldregions.2012.05.016.

    Article  Google Scholar 

  13. WANG Da-yan, MA Wei, NIU Yong-hong, CHANG Xiao-xiao, WEN Zhi. Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay [J]. Cold Regions Science and Technology, 2007, 48(1): 34–43. DOI: 10.1016/j.coldregions.2006.09.008.

    Article  Google Scholar 

  14. LIU Jian-kun, CHANG Dan, YU Qian-mi. Influence of freeze-thaw cycles on mechanical properties of a silty sand [J]. Engineering Geology, 2016, 210(5): 23–32. DOI: 10.1016/j.enggeo.2016.05.019.

    Article  Google Scholar 

  15. LU Yang, LIU Si-hong, ALONSO E, WANG Liu-jiang, XU Lei, LI Zhuo. Volume changes and mechanical degradation of a compacted expansive soil under freeze-thaw cycles [J]. Cold Regions Science and Technology, 2019, 157: 206–214. DOI: 10.1016/j.coldregions.2018.10.008.

    Article  Google Scholar 

  16. SIMONSEN E, JANOO V C, ISACSSON U. Resilient properties of unbound road materials during seasonal frost conditions [J]. Journal of Cold Regions Engineering, 2002, 16(1): 28–50. DOI: 10.1061/(ASCE)0887-381X(2002)16:1(28).

    Article  Google Scholar 

  17. CHEN Yu-long, WEI Zuo-an, IRFAN M, XU Jia-jun, YANG Yong-hao. Laboratory investigation of the relationship between electrical resistivity and geotechnical properties of phosphate tailings [J]. Measurement, 2018, 126: 289–298. DOI: 10.1016/j.measurement.2018.05.095.

    Article  Google Scholar 

  18. GINGINE V, DIAS A S, CARDOSO R. Compaction control of clayey soils using electrical resistivity charts [J]. Procedia Engineering, 2016, 143: 803–810. DOI: 10.1016/j.proeng. 2016.06.130.

    Article  Google Scholar 

  19. SUDHA K, ISRAIL M, MITTAL S, RAI J. Soil characterization using electrical resistivity tomography and geotechnical investigations [J]. Journal of Applied Geophysics, 2009, 67(1): 74–79. DOI: 10.1016/j.jappgeo.2008.09.012.

    Article  Google Scholar 

  20. ZHANG Ding-wen, CHEN Lei, LIU Song-yu. Key parameters controlling electrical resistivity and strength of cement treated soils [J]. Journal of Central South University, 2012, 19 (10): 2991–2998. DOI: 10.1007/s11771-012-1368-8.

    Article  Google Scholar 

  21. LI An-yuan, NIU Fu-jun, ZHENG Hao, AKAGAWA S, LIN Zhan-ju, LUO Jing. Experimental measurement and numerical simulation of frost heave in saturated coarse-grained soil [J]. Cold Regions Science and Technology, 2017, 137: 68–74. DOI: 10.1016/j.coldregions. 2017.02.008.

    Article  Google Scholar 

  22. SHI Wei-cheng, ZHU Jun-gao, ZHAO Zhong-hui, LIU Han-long. Strength and deformation behaviour of coarse-grained soil by true triaxial tests [J]. Journal of Central South University, 2010, 17(5): 1095–1102. DOI: 10.1007/s11771-010-0602-5.

    Article  Google Scholar 

  23. ZHANG Yu-zhi, MA Wei, WANG Tian-liang, CHENG Bo-yuan, WEN An. Characteristics of the liquid and vapor migration of coarse-grained soil in an open-system under constant-temperature freezing [J]. Cold Regions Science and Technology, 2019, 165: 102793. DOI: 10.1016/j.coldregions.2019.102793.

    Article  Google Scholar 

  24. QU Yong-long, CHEN Guo-liang, NIU Fu-jun, NI Wan-kui, MU Yan-hu, LUO Jing. Effect of freeze-thaw cycles on uniaxial mechanical properties of cohesive coarse-grained soils [J]. Journal of Mountain Science, 2019, 16(9): 2159–2170. DOI: 10.1007/s11629-019-5426-7.

    Article  Google Scholar 

  25. ZHANG Yu-zhi, MA Wei, ZHAO Wei-gang, WEN An, LI Pei, WANG Bao-xian. Water-heat-vapor migration trace and characteristics of unsaturated coarse-grained filling under freeze and thaw cycles [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 39(1): 156–165. DOI: 10.13722/j.cnki.jrme.2019.0499. (in Chinese)

    Article  Google Scholar 

  26. YAO Xiao-liang, FANG Li-li, QI Ji-lin, YU Fan. Study on mechanism of freeze-thaw cycles induced changes in soil strength using electrical resistivity and X-ray computed tomography [J]. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139(2): 021501. DOI: 10.1115/1.4035244.

    Article  Google Scholar 

  27. KANG M, LEE J. Evaluation of the freezing-thawing effect in sand-silt mixtures using elastic waves and electrical resistivity [J]. Cold Regions Science and Technology, 2015, 113: 1–11. DOI: 10.1016/j.coldregions. 2015.02.004.

    Article  Google Scholar 

  28. [28] Ministry of Water Resources of the People’s Republic of China (MWRPRC). SL237-1999, specification of soil test[S]. Beijing: China Water and Power Press, 1999. (in Chinese)

    Google Scholar 

  29. ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics [J]. Transactions of the AIME, 1942, 146: 54–62. DOI: 10.2118/942054-g.

    Article  Google Scholar 

  30. FENG De-cheng, LIN Bo, ZHANG Feng, FENG Xin. A review of freeze-thaw effects on soil geotechnical properties [J]. Scientia Sinica Technologica, 2017, 47: 111–127. DOI: 10.1360/N092016-00224. (in Chinese)

    Article  Google Scholar 

  31. HOTINEANU A, BOUASKER M, ALDAOOD A, AL- MUKHTAR M. Effect of freeze-thaw cycling on the mechanical properties of lime-stabilized expansive clays [J]. Cold Regions Science and Technology, 2015, 119: 151–157. DOI: 10.1016/j.coldregions.2015.08.008.

    Article  Google Scholar 

  32. GULLU H, KHUDIR A. Effect of freeze-thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fiber, steel fiber and lime [J]. Cold Regions Science and Technology, 2014, 106-107: 55–65. DOI: 10.1016/j.coldregions.2014.06.008.

    Article  Google Scholar 

  33. LIU Chun, SHI Bin, ZHOU Jian, TANG Chao-sheng. Quantification and characterization of micro porosity by image processing, geometric measurement and statistical methods: application on SEM images of clay materials [J]. Applied Clay Science, 2011, 54(1): 97–106. DOI: 10.1016/j.clay.2011.07.022.

    Article  Google Scholar 

  34. SEZER G İ, RAMYAR K, KARASU B, GÖKTEPE A. B, SEZER A. Image analysis of sulfate attack on hardened cement paste [J]. Materials & Design, 2008, 29(1): 224–231. DOI: 10.1016/j.matdes.2006.12.006.

    Article  Google Scholar 

  35. WAXMAN M H, SMITS L J M. Electrical conductivities in oil-Bearing shaly sands [J]. Society of Petroleum Engineers Journal, 1968, 8(2): 107–122. DOI: 10.2118/1863-A.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-hu Mu PhD  (穆彦虎).

Additional information

Foundation item: Project(2016ZGHJ/XZHTL-YQSC-26) supported by the Key Scientific Research Project of China Gold Group; Project(SQ2019QZKK2806) supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program, China; Project(300102268716) supported by the Fundamental Research Funds for the Central Universities, China; Project(LHKA-G201701) supported by the Science and Technology Project of Yalong River Hydropower Development Company, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Yl., Ni, Wk., Niu, Fj. et al. Mechanical and electrical properties of coarse-grained soil affected by cyclic freeze-thaw in high cold regions. J. Cent. South Univ. 27, 853–866 (2020). https://doi.org/10.1007/s11771-020-4336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4336-8

Key words

关键词

Navigation