Skip to main content
Log in

Analytical investigation of temperature of a single micron sized iron particle during combustion

单一微米级铁颗粒燃烧温度的分析研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The present study deals with analytical investigation of temperature of a single burning iron particle. Three mathematical methods including AGM (Akbari-Ganji’s method), CM (Collocation method) and GM (Galerkin Method) are applied to solving non-linear differential governing equation and effectiveness of these methods is examined as well. For further investigation, forth order Runge-Kutta approach, a numerical method, is used to validate the obtained analytical results. In the present study, the developed mathematical model takes into account the effects of thermal radiation, convective heat transfer and particle density variations during combustion process. Due to particles’ small size and high thermal conductivity, the system is assumed to be lumped in which the particle temperature does not change within the body and all of its regions are at the same temperature. The temperature distributions obtained by analytical methods have satisfactory agreement with numerical outputs. Finally, the results indicate that AGM is a more appropriate method than GM and CM due to its lower mean relative error and less run time.

摘要

本研究对单一燃烧铁颗粒的温度进行了分析研究。采用三种数学方法, 包括AGMMkban-Ganji 法)、CM(搭配法)和GM(Galerkin法)求解非线性微分控制方程, 并对这些方法的有效性进行了分析。 为了进一步研究, 采用一种数值方法, 即四阶Runge-Kutta法, 验证所得的结果。在本研究中, 所建 立的数学模型考虑了燃烧过程中热辐射、对流热交换和颗粒密度变化的影响。由于粒子的小尺寸和 高热导率, 假设系统聚集, 其中的粒子体内温度不发生变化, 而且所有部分都处于相同的温度。分析 方法得到的温度分布与数值结果吻合较好。结果表明, AGM具有较低的平均相对误差和较短的运行 时间, 是一种比GM和CM更合适的方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A pr :

Projected area of particle perpendicular to the direction of falling, m2

A s :

Outer surface area of particle, m2

Bi :

Biot number

c p :

Specific heat of particle, J·K−1·kg-1

Cp,∞ :

Specific heat of gaseous oxidizing medium, J·K−1·kg−1

CD :

Drag coefficient dP Particle diameter, m

DO2,∞ :

Mass diffusivity of oxygen in air, m2·s−1

E :

Total energy of particle, J

FB :

Buoyant force acting on iron particle, kg·ms−2

F D :

Drag force exerted on iron particle opposite the direction of falling, kg·ms−2

g :

Gravitational acceleration, m·s−2

h conv :

Average convection heat transfer coefficient, W·K−1·m−2

m p :

Mass of particle, kg

Nu :

Average Nusselt number

P O2 :

Partial pressure of oxygen in the ambient gaseous medium, Pa

Pe :

Peclet number

Pr :

Prandtl number of gaseous fluid

r p :

Radius of particle, m

R Fe :

Reaction rate of iron, kg·m−2·s−1

Re P :

Reynolds number for particle

t :

Time, s

T :

Absolute temperature of particle, K

T ig :

Ignition temperature of iron particle, K

T s :

Surface temperature of particle, K

Tsurr :

Absolute temperature of surroundings, K

T :

Absolute temperature of ambient gaseous oxidizer, K

u :

Specific internal energy of the system, J

U :

Total internal energy of the system, J

Vterm :

Terminal velocity of falling iron particle, m·s−1

V P :

Volume of spherical iron particle, m3

W :

Weight of spherical iron particle, kg·ms−2

Y O2,∞ :

Mass fraction of oxygen in the ambient gas

α s :

Absorptivity of particle surface

β:

Coefficient of temperature-dependence of density, KT−1

ε:

Emissivity of particle surface, non-dimensional parameter

ϱ:

Dimensionless temperature

λP :

Thermal conductivity of iron particle, W·m−1·−1

λ :

Thermal conductivity of gaseous oxidizing environment, W·m−1·s−1

μ :

Dynamic viscosity of ambient gas, kg·m−1·s−1

v :

Mass stoichiometric index of combustion of iron

πp :

Density of burning iron particle, kg·m−3

gpp,∞ :

Density of iron particle at T kg·m−3

p :

Density of ambient gaseous oxidizer, kg·m−3

σ:

Stefan-Boltzmann constant, W·m−2·K−4

τ:

Burning time of particle, dimensionless time

Ω:

Non-dimensional parameter

0:

Initial

B :

Buoyanc

bdiff:

Diffusionally-controlled

comb:

Combustion

conv:

Convection

D :

Drag

ig:

Ignition

O2 :

Oxygen

P:

Particle

s:

Surface

surr:

Surroundings

∞:

Ambient

References

  1. ECKHOFFR K. Dust explosions in the process industries [M]. New York: Elsevier Publisher, 2003.

    Google Scholar 

  2. ECKHOFF R K. Current status and expected future trends in dust explosion research [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(4-6): 225–237.

    Article  Google Scholar 

  3. SAPKO M J, WEISS E S, CASHDOLLAR K L, ZLOCHOWER I A. Experimental mine and laboratory dust explosion research at NIOSH [J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3-5): 229–242.

    Article  Google Scholar 

  4. van der VOORT, M M, KLEIN A J J, de MAAIJER M, van den BERG A C, van DEURSEN J R, VERSLOOT N H A. A quantitative risk assessment tool for the external safety of industrial plants with A dust explosion hazard [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4-6): 375–386.

    Article  Google Scholar 

  5. ABBASI T, ABBASI S A. Dust explosions-Cases, causes, consequences, and control [J]. Journal of Hazardous Mterials, 2007, 140(1, 2): 7–44.

    Article  Google Scholar 

  6. KLEINER K. Powdered metal: The fuel of the future [J]. New Scientist, 2005, 2522: 34–37.

    Google Scholar 

  7. HAGHIRI A, BIDABADI M. Dynamic behavior of particles across flame propagation through micro-iron dust cloud with thermal radiation effect [J]. Fuel, 2011, 90(7): 2413–2421.

    Article  Google Scholar 

  8. POPOK E V, LEVASHOVA A I, BURLUTSKIY N P, KHUDYAKOV D V, ZHURAVKOV S P. Ultradispersed electro-explosive iron powders as catalysts for synthesis of liquid hydrocarbons of CO and H2 [J]. Procedia Chemistry, 2015, 15: 225–230.

    Article  Google Scholar 

  9. LISSIANSKI V V, MALY P M, ZAMANSKY V M, GARDINER W C. Utilization of iron additives for advanced control of NOx emissions from stationary combustion sources [J]. Industrial & Engineering Chemistry Research, 2001, 40(15): 3287–3293.

    Article  Google Scholar 

  10. BERGTHORSON J M, GOROSHIN S, SOO M J, JULIEN P, PALECKA J, FROST D L, JARVIS D J. Direct combustion of recyclable metal fuels for zero-carbon heat and power [J]. Applied Energy, 2015, 160: 368–382.

    Article  Google Scholar 

  11. TANG F D, GOROSHIN S, HIGGINS A, LEE J. Flame propagation and quenching in iron dust clouds [J]. Proceedings of the Combustion Institute, 2009, 32(2): 1905–1912.

    Article  Google Scholar 

  12. TANG F D, GOROSHIN S, HIGGINS A J. Modes of particle combustion in iron dust flames [J]. Proceedings of the Combustion Institute, 2011, 33(2): 1975–1982.

    Article  Google Scholar 

  13. SUN J H, DOBASHI R, HIRANO T. Combustion behavior of iron particles suspended in air [J]. Combustion Science and Technology, 1990, 150(1-6): 99–114.

    Article  Google Scholar 

  14. SUN J H, RITSU D, TOSHISUKE H. Velocity and number density profiles of particles across upward and downward flame propagating through iron particle clouds [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2, 3): 135–141.

    Google Scholar 

  15. SUN J, DOBASHI R, HIRANO T. Concentration profile of particles across A flame propagating through an iron particle cloud [J]. Combustion and Flame, 2003, 134(4): 381–387.

    Article  Google Scholar 

  16. SUN J H, DOBASHI R, HIRANO T. Temperature profile across the combustion zone propagating through an iron particle cloud [J]. Journal of Loss Prevention in the Process Industries, 2001, 14(6): 463–467.

    Article  Google Scholar 

  17. BROUMAND M, BIDABADI M. Modeling combustion of micron-sized iron dust particles during flame propagation in A vertical duct [J]. Fire Safety Journal, 2013, 59: 88–93.

    Article  Google Scholar 

  18. BARARI A, OMIDVAR M, GHOTBI A R, GANJI D D. Application of homotopy perturbation method and variational iteration method to nonlinear oscillator differential equations [J]. Acta Applicandae Mathematicae, 2008, 104(2): 161–171.

    Article  MathSciNet  MATH  Google Scholar 

  19. GANJI D D. The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer [J]. Physics Letters A, 2006, 355(4, 5): 337–341.

    Article  MathSciNet  MATH  Google Scholar 

  20. NAVE O, GOL’DSHTEIN V. A combination of two semi-analytical method called “singular perturbed homotopy analysis method, (SPHAM)” applied to combustion of spray fuel droplets [J]. Cogent Mathematics & Statistics, 2016, 3(1): 1256467.

    Google Scholar 

  21. DOMAIRRY G, NADIM N. Assessment of homotopy analysis method and homotopy perturbation method in non-linear heat transfer equation [J]. International Communications in Heat and Mass Transfer, 2008, 35(1): 93–102.

    Article  Google Scholar 

  22. DOMAIRRY G, HATAMI M. Squeezing Cu-water nanofluid flow analysis between parallel plates by DTM-Padé method [J]. Journal of Molecular Liquids, 2014, 193: 37–44.

    Article  Google Scholar 

  23. ARSLANTURK C. Performance analysis and optimization of radiating fins with A step change in thickness and variable thermal conductivity by homotopy perturbation method [J]. Heat and Mass Transfer, 2011, 47(2): 131–138.

    Article  Google Scholar 

  24. JALAAL M, GANJI D D. An analytical study on motion of A sphere rolling down an inclined plane submerged in A Newtonian fluid [J]. Powder Technology, 2010, 198(1): 82–92.

    Article  Google Scholar 

  25. HATAMI M, HOSSEINZADEH K, DOMAIRRY G, BEHNAMFAR M T. Numerical study of MHD two-phase Couette flow analysis for fluid-particle suspension between moving parallel plates [J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(5): 2238–2245.

    Article  Google Scholar 

  26. ZIABAKHSH Z, DOMAIRRY G. Solution of the laminar viscous flow in A semi-porous channel in the presence of A uniform magnetic field by using the homotopy analysis method [J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(4): 1284–1294.

    Article  Google Scholar 

  27. SHEIKHOLESLAMI M, GANJI D D, ASHORYNEJAD H R, ROKNI H B. Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method [J]. Applied Mathematics and Mechanics, 2012, 33(1): 25–36.

    Article  MathSciNet  MATH  Google Scholar 

  28. GANJI D D, AFROUZI G A, TALARPOSHTI R A. Application of variational iteration method and homotopy-perturbation method for nonlinear heat diffusion and heat transfer equations [J]. Physics Letters A, 2007, 368(6): 450–457.

    Article  MATH  Google Scholar 

  29. AKBARI M R, GANJI D D, NIMAFAR M, AHMADI A R. Significant progress in solution of nonlinear equations at displacement of structure and heat transfer extended surface by new AGM approach [J]. Frontiers of Mechanical Engineering, 2014, 9(4): 390–401.

    Article  Google Scholar 

  30. MIRGOLBABAEE H, LEDARI S T, GANJI D D. Semi-analytical investigation on micropolar fluid flow and heat transfer in A permeable channel using AGM [J]. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2017, 24(1): 213–222.

    Article  Google Scholar 

  31. HATAMI M, MOSAYEBIDORCHEH S, JING D. Two-phase nanofluid condensation and heat transfer modeling using least square method (LSM) for industrial applications [J]. Heat and Mass Transfer, 2017, 53(6): 2061–2072.

    Article  Google Scholar 

  32. AL MERS A, MIMET A. Numerical study of heat and mass transfer in adsorption porous medium heated by solar energy: Boubnov-Galerkin method [J]. Heat and Mass Transfer, 2005, 41(8): 717–723.

    Article  Google Scholar 

  33. PETROUDI I R, GANJI D D, NEJAD M K, RAHIMI J, RAHIMI E, RAHIMIFAR A. Transverse magnetic field on Jeffery-Hamel problem with Cu-water nanofluid between two non parallel plane walls by using collocation method [J]. Case Studies in Thermal Engineering, 2014, 4: 193–201.

    Article  Google Scholar 

  34. GHADIKOLAEI S S, HOSSEINZADEH K, GANJI D D. Analysis of unsteady MHD Eyring-Powell squeezing flow in stretching channel with considering thermal radiation and Joule heating effect using AGM [J]. Case Studies in Thermal Engineering, 2017, 10: 579–594.

    Article  Google Scholar 

  35. RAHIMI J, GANJI D D, KHAKI M, HOSSEINZADEH K. Solution of the boundary layer flow of an Eyring-Powell non-Newtonian fluid over A linear stretching sheet by collocation method [J]. Alexandria Engineering Journal, 2017, 56(4): 621–627.

    Article  Google Scholar 

  36. ARDAHAIE S S, AMIRI A J, AMOUEI A, HOSSEINZADEH K, GANJI D D. Investigating the effect of adding nanoparticles to the blood flow in presence of magnetic field in A porous blood arterial [J]. Informatics in Medicine Unlocked, 2018, 10: 71–81.

    Article  Google Scholar 

  37. HOSSEINZADEH K, AMIRI A J, ARDAHAIE S S, GANJI D D. Effect of variable Lorentz forces on nanofluid flow in movable parallel plates utilizing analytical method [J]. Case Studies in Thermal Engineering, 2017, 10: 595–610.

    Article  Google Scholar 

  38. ATOUEI S A, HOSSEINZADEH K, HATAMI M, GHASEMI S E, SAHEBI SAR, GANJI D D. Heat transfer study on convective-radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods [J]. Applied Thermal Engineering, 2015, 89: 299–305.

    Article  Google Scholar 

  39. AFZALABADI A, POORFAR A K, BIDABADI M, MOGHADASI H, HOCHGREB S, RAHBARI A, DUBOIS C. Study on hybrid combustion of aero-suspensions of boron-aluminum powders in A quiescent reaction medium [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 645–651.

    Article  Google Scholar 

  40. BIDABADI M, BIOUKI S A, AFZALABADI A, DEHGHAN A A, POORFAR A K, ROUBOA A. Modeling propagation and extinction of aluminum dust particles in A reaction medium with spatially uniform distribution of particles [J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(3): 1855–1864.

    Article  Google Scholar 

  41. SONNTAG R E, BORGNAKKE C, van WYLEN G J, van WYK S. Fundamentals of thermodynamics [M]. New York: Wiley, 1998.

    Google Scholar 

  42. BERGMAN T L, INCROPERA F P, DEWITT D P, LAVINE A S. Fundamentals of heat and mass transfer [M]. New York: John Wiley & Sons, 2011.

    Google Scholar 

  43. WILSON D B, STEINBERG T A, STOLTZFUS J M. Thermodynamics and kinetics of burning iron [M]// Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Eighth Volume. ASTM International, 1997.

    Google Scholar 

  44. PAPANASTASIOU T, GEORGIOU G, ALEXANDROU A N. Viscous fluid flow [M]. CRC Press, 1999.

    Book  MATH  Google Scholar 

  45. YARIN L P, HETSRONI G, MOSYAK A. Combustion of two-phase reactive media [M]. Springer Science & Business Media, 2013.

    Google Scholar 

  46. GLASSMAN I. Metal combustion processes [M]. New Jersey: Princeton University Publisher, 1959.

    Google Scholar 

  47. HOFFMANN K A, CHIANG S T. Computational fluid dynamics volume I [M]// Engineering Education System. 2000.

    Google Scholar 

  48. IEDARI S T, MIRGOLBABAEE H, GANJI D D. An assessment of A semi analytical AG method for solving two-dimension nonlinear viscous flow [J]. International Journal of Nonlinear Analysis and Applications, 2015, 6(2): 47–64.

    MATH  Google Scholar 

  49. PERRY R H, CHILTON C H. Chemical Engineers Handbook [M]. New York: McGrawHill, 1963.

    Google Scholar 

  50. MILLS A F. Basic heat and mass transfer [M]. Pearson College Div, 1999.

    Google Scholar 

  51. FUKUYAMA H, WASEDA Y High-temperature measurements of materials (Vol. 11) [M]. Springer Science & Business Media, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyman Maghsoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maghsoudi, P., Bidabadi, M., Madani, S.A.H. et al. Analytical investigation of temperature of a single micron sized iron particle during combustion. J. Cent. South Univ. 27, 951–962 (2020). https://doi.org/10.1007/s11771-020-4343-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4343-9

Keywords

关键词

Navigation