Skip to main content
Log in

3D surface profile diagnosis using digital image processing for laboratory use

实验室用数字图像处理进行三维表面轮廓诊断

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The measurement of the surface quality and the profile preciseness is major issues in many industrial branches such that the surface quality of semi products directly affects the subsequent production steps. Although, there are many ways to obtain required data, the hardware necessary for the measurements such as 2D or 3D scanners, depending on the problem’s complexity, is too expensive. Therefore, in this paper, what we put forward as a novelty is an algorithm which is verified on the model of simple 3D scanner on the image processing basis with the resolution of 0.1 mm. There are many ways to scan surface profile; however, the image processing currently is the most trending topic in industry automation. Most importantly, in order to obtain surface images, standard high resolution reflex camera is used and thus the post processing could be realized with MatLab as the software environment. Therefore, this solution is an alternative to the expensive scanners, and single-purpose devices could be extended by many additional functions.

摘要

表面质量和轮廓精度的测量难是许多工业行业中存在的主要问题, 半成品的表面质量直接影响 到后续的生产步骤。虽然有许多方法可以获得所需的数据, 但根据问题的复杂性所需要的测量硬件, 比如二维或三维扫描仪, 都比较昂贵。因此, 本文提出一种新颖的算法, 并在简单的三维扫描仪模型 上, 以0.1 mm 的分辨率的图像处理进行了验证。扫描表面轮廓的方法有很多, 但图像处理是目前工 业自动化中最热门的课题。最重要的是, 为了获得表面图像, 使用标准的高分辨率反射相机, 以MatLab 为软件环境实现后处理。因此, 这种解决方案可以替代昂贵的扫描仪, 利用单一用途设备的额外功能 扩展来实现。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. POLO M E, FELIC½SIMO Á M. Analysis of uncertainty and repeatability of a low-cost 3D laser scanner [J]. Sensors, 2012, 12(7): 9046–9054.

    Article  Google Scholar 

  2. STANČIĆ I, MUSIĆ J, ZANCHI V. Improved structured light 3D scanner with application to anthropometric parameter estimation [J]. Measurement, 2013, 46(1): 716–726.

    Article  Google Scholar 

  3. LI G W, TANG J Y, ZHOU W, LI L. Fatigue life prediction of workpiece with 3D rough surface topography based on surface reconstruction technology [J]. Journal of Central South University, 2018, 25(9): 2069–2075.

    Article  Google Scholar 

  4. MATULOVA P, STEMBERKOVA R, ZDRALEK P, MARESOVA P, KUCA K. Regional development of small and medium enterprise in correlation of the life cycle [C]// Proceedings of the 28th International Business Information Management Association Conference-Vision. Innovation Management, Development Sustainability, and Competitive Economic Growth. 2016: 1253–1261.

    Google Scholar 

  5. MATULOVÑ P, ŠTEMBERKOVÑ R, ZDRALEK P, MAREŠOVÑ P, KUČA K. Utilization rate of open innovation in correlation of the SME life cycle [C]// IDIMT 2016-Information Technology, Society and Economy Strategic Cross-Influences-24th Interdisciplinary Information Management Talks. 2016: 251–258.

    Google Scholar 

  6. KREJCAR O, FRISCHER R. Real time voltage and current phase shift analyzer for power saving applications [J]. Sensors (Switzerland), 2012, 12(8): 11391–11405.

    Article  Google Scholar 

  7. CZEKAJ P, KREJCAR O. Real-time control systems secured communication [C]// 9th IFAC Workshop on Programmable Devices and Embedded Systems. 2009: 23–26.

    Google Scholar 

  8. BI Z M, WANG L. Advances in 3D data acquisition and processing for industrial applications [J]. Robotics and Computer-Integrated Manufacturing, 2010, 26(5): 403–413.

    Article  Google Scholar 

  9. LI Q, YAO M, YAO X, XU B. A real-time 3D scanning system for pavement distortion inspection [J]. Meas Sci Technol, 2009, 21(1): 015702.

    Google Scholar 

  10. CHANG K T, CHANG J R, LIU J K. Detection of pavement distresses using 3D laser scanning technology [C]// Computing in Civil Engineering (2005). Cancun, Mexico, 2005: 1–11.

    Google Scholar 

  11. KREJCAR O, FRISCHER R, DAVID J. Surface diagnostics of narrow plate moulds [J]. Metalurgija, 2015, 54(4): 653–656.

    Google Scholar 

  12. WANG L S, LEE D L, NIE M Y, ZHENG Z W. A study of the precision factors of large-scale object surface profile laser scanning measurement [J]. Journal of Materials Processing Technology, 2002, 129: 584–587.

    Article  Google Scholar 

  13. GENG J. Structured-light 3D surface imaging: A tutorial [J]. Adv Opt Photon, 2011, 3(2): 128–160.

    Article  Google Scholar 

  14. SCHIRRIPA S PAGNOLO G, COZZELLA L, LECCESE F. Viability of an optoelectronic system for real time roughness measurement [J]. Measurement, 2014, 58: 537–543.

    Article  Google Scholar 

  15. DEMIRCIOGLU P. Estimation of surface topography for dental implants using advanced metrological technology and digital image processing techniques [J]. Measurement, 2014, 48: 43–53.

    Article  Google Scholar 

  16. GAO Y, LI X, DONG M, LI H P. An enhanced artificial bee colony optimizer and its application to multi-level threshold image segmentation [J]. Journal of Central South University, 2018, 25(1): 107–120.

    Article  Google Scholar 

  17. CHEN B Q, CUI J G, XU Q, SHU T, LIU H L. Coupling denoising algorithm based on discrete wavelet transform and modified median filter for medical image [J]. Journal of Central South University, 2019, 26(1): 120–131.

    Article  Google Scholar 

  18. KIM M K, CHENG J C P, SOHN H, CHANG C C. A framework for dimensional and surface quality assessment of precast concrete elements using BIM and 3D laser scanning [J]. Automation in Construction, 2015, 49: 225–238.

    Article  Google Scholar 

  19. QIAN D S, PENG Y Y, DENG J D. Hot deformation behavior and constitutive modeling of Q345E alloy steel under hot compression [J]. Journal of Central South University, 2017, 24(2): 284–295.

    Article  Google Scholar 

  20. ZHOU W, TANG J Y, HE Y F, ZHU C C. Modeling of rough surfaces with given roughness parameters [J]. Journal of Central South University, 2017, 24(1): 127–136.

    Article  Google Scholar 

  21. ALPAR O, KREJCAR O. Virtual road condition prediction through license plates in 3D simulation [C]// Computational Collective Intelligence, 8th International Conference, ICCCI 2016. 2016: 269–78.

    Article  Google Scholar 

  22. WANG M, XI L, DU S. 3D surface form error evaluation using high definition metrology [J]. Precision Engineering, 2014, 38: 230–236.

    Article  Google Scholar 

  23. HUANG S S, SUN Z Q, ZHOU T, ZHOU J M. Application of time-frequency entropy from wake oscillation to gas-liquid flow pattern identification [J]. Journal of Central South University, 2018, 25(7): 1690–1700.

    Article  Google Scholar 

  24. ZENG M, LI J H, MENG Q H, ZHANG X N. Temporal-spatial cross-correlation analysis of non-stationary near-surface wind speed time series [J]. Journal of Central South University, 2017, 24(3): 692–698.

    Article  Google Scholar 

  25. MAJID S, MOHAMMAD J. Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow [J]. Journal of Central South University, 2017, 24(8): 1850–1865.

    Article  Google Scholar 

  26. TANAKA M, KAYAMA A. Automated image processing for fractal analysis of fracture surface profiles in high-temperature materials [J]. Journal of Materials Science Letters, 2001, 20: 907–909.

    Article  Google Scholar 

  27. KUCHERIK A, GERKE M, FATKULLIN E, PROKOSHEV V, ARALKELIAN S. The use of scanning probe microscopy for diagnostics of laser-induced surface instabilities [J]. Laser Physics, 2005, 15(7): 1071–1074.

    Google Scholar 

  28. DAVID J, JANČ½KOYÑ Z, FRISCHER R, VROŻINA M. Crystallizer’s desks surface diagnostics with usage of robotic system [J]. Archives of Metallurgy and Materials, 2013, 58(3): 907–910.

    Article  Google Scholar 

  29. BÑSACA-PRECIADO L C, SERGIYENKO O, RODR½GUEZ-QUINONEZ J C, GARC½A X, TYRSA V V, IVAS-LOPEZ M, HERNANDEZ-BALBUENA D, MERCORELLI P, PODRYGALO M, GURKO A, TABAKOVA I, STAROSTENKO O. Optical 3D laser measurement system for navigation of autonomous mobile robot [J]. Opticsand Lasers in Engineering, 2014, 54: 159–169.

    Article  Google Scholar 

  30. CHEN H, MA S, NUECHTER A. Non-synchronous point cloud algorithm for 3D reconstruction based on laser scanning and SFM [J]. Chinese Journal of Scientific Instrument, 2016, 37(5): 1148–1157.

    Google Scholar 

  31. GARCIA-CRUZ X M, SERGIYENKO O Y, TYRSA V V, RIVAS-LOPEZ M, HERNANDEZ-BALBUENA D, RODRIGUEZ-QUIÁONEZ J C, BASACA-PRECIADO L C, MERCORELLI P. Optimization of 3D laser scanning speed by use of combined variable step [J]. Optics and Lasers in Engineering, 2014, 54: 141–151.

    Article  Google Scholar 

  32. LINDSKOG E, VALLHAGEN J, JOHANSSON B. Production system redesign using realistic visualisation [J]. International Journal of Production Research, 2017, 55(3): 858–869.

    Article  Google Scholar 

  33. XIA C, SHI Y, YIN W. Obtaining and denoising method of three-dimensional point cloud data of plants based on TOF depth sensor [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(6): 168–174.

    Google Scholar 

  34. HUBER A, SCHWEER B, PHILIPPS V, GIERSE N, ZLOBINSKI M, BREZINSEK S, BIEL W, KOTOV V, LEYTE- GONZALES R, MERTENS, SAMM U. Development of laser-based diagnostics for surface characterisation of wall components in fusion devices [J]. Fusion Engineering and Design, 2011, 86(6-8): 1336–1340.

    Google Scholar 

  35. PODYMOVA N B, KARABUTOV A A, CHEREPETSKAYA E B. Laser optoacoustic method for quantitative nondestructive evaluation of the subsurface damage depth in ground silicon wafers [J]. Laser Physics, 2014, 24: No. 086003.

  36. van der MEIDEN H J, van den BERG M A, BRONS S, DING H, van ECK H J N, HOEN M H J ’T, KARHUNEN J, de KRUIF T M, LAAN M, LI C, LISSOVSKI A, MORGAN T W, PARIS P, PIIP K, van de POL M J, SCANNELL R, SCHOLTEN J, SMEETS P H M, SPORK C, van EMMICHOVEN P A Z, ZOOMERS R, de TEMMERMAN G. Laser-based diagnostics applications for plasma-surface interaction studies [J]. Journal of Instrumentation, 2013, 8: 11.

  37. İÇÖZ K. Image processing and cell phone microscopy to analyze the immunomagnetic beads on micro-contact printed gratings [J]. Applied Sciences, 2016, 6(10): No. 279. https://www.mdpi.com/2076-3417/6/10/279.

    Google Scholar 

  38. CHEN Z G, LI Y G, CHEN X F, YANG C H, GUI W H. Edge and texture detection of metal image under high temperature and dynamic solidification condition [J]. Journal of Central South University, 2018, 25(6): 1501–1512.

    Article  Google Scholar 

  39. VESELKA L, DVORAK J, KREJCAR O. Smart automatic control of GSM alarm [C]// Mobile Web and Intelligent Information Systems, 13th International Conference, MOBIWIS 2016. 2016: 363–375.

    Article  Google Scholar 

  40. KLIMOVA B, MARESOVA P, KREJCAR O. Smart home technology and energy savings with a special focus on Europe [C]// Advanced Multimedia and Ubiquitous Engineering, MUE/FutureTech 2017. 2017: 481–486.

    Article  Google Scholar 

  41. DENG Y, CHEN Z, YAO X, HASSAN S, WU J. Task scheduling for smart city applications based on multi-server mobile edge computing [J]. IEEE Access, 2019, 7: 14410–14421.

    Article  Google Scholar 

  42. ALVEAR O, CALAFATE C T, CANO J C, MANZONI P. Crowdsensing in smart cities: Overview, platforms, and environment sensing issues [J]. Sensors, 2018, 18(2): 460.

    Google Scholar 

  43. KREJCAR O, FRISCHER R. Smart intelligent control of current source for high power LED diodes [J]. Microelectronics Journal, 2013, 44(4): 307–314.

    Article  Google Scholar 

  44. SPICKA I, KREJCAR O, FRISCHER R, KOSTIAL P, SELAMAT A, JANCIKOVA Z, KUCA K. Utilization of linearization methods for measuring of thermal properties of materials [J]. AIMS Biophysics, 2018, 5(4): 257–271.

    Article  Google Scholar 

  45. KREJCAR O, KONARIK P. Remote wireless low cost RT process control using windows PLC by MATLAB/Simulink throw the REX control system [C]// 5th IEEE GCC Conference and Exhibition, GCC 2009. Kuwait City, 2009: NO. 5734255.

  46. SUKALA O, MARESOVA P, DVORAK J, SELAMAT A, KREJCAR O. Calculating the optimal price of products in an online store [C]// Mobile Web and Intelligent Information Systems-14th International Conference, MobiWIS 2017. 2017: 104–114.

    Article  Google Scholar 

  47. MESICEK J, ZDARSKY J, DOLEZAL R, KREJCAR O, KUCA K. Simulations of light propagation and thermal response in biological tissues accelerated by graphics processing unit [C]// Computational Collective Intelligence, 8th International Conference, ICCCI 2016. 2016: 242–251.

    Article  Google Scholar 

  48. TERVEN J R, CÃRDOVA-ESPARZA D M. Kin2. A Kinect 2 toolbox for MATLAB [J]. Science of Computer Programming, 2016, 130: 97–106.

    Article  Google Scholar 

  49. SZILÑGYI B, NAGY Z K. Graphical processing unit (GPU) acceleration for numerical solution of population balance models using high resolution finite volume algorithm [J]. Computers and Chemical Engineering, 2016, 91: 167–181.

    Article  Google Scholar 

  50. CASTANO-DIEZ D, MOSER D, SCHOENEGGER A, PRUGGNALLER S, FRANGAKIS A S. Performance evaluation of image processing algorithms on the GPU [J]. Journal of Structural Biology, 2008, 164(1): 153–160.

    Article  Google Scholar 

  51. FRANCO J, BERNABE G, FERNANDEZ J, UJALDON M. The 2D wavelet transform on emerging architectures: GPUs and multicores [J]. Journal of Real-Time Image Processing, 2012, 7(3): 145–152.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of student Sebastien Mambou in consultations regarding application aspects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Krejcar PhD.

Additional information

Foundation item: Project(2102-2020) supported by the SEV Project, University of Hradec Kralove, FIM, Czech Republic; Project(Vot-20H04) supported by Universiti Teknologi Malaysia (UTM); Project(Vot 4L876) supported by Malaysia Research University Network (MRUN); Project(Vot 5F073) supported by the Fundamental Research Grant Scheme (FRGS), Ministry of Education Malaysia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frischer, R., Krejcar, O., Selamat, A. et al. 3D surface profile diagnosis using digital image processing for laboratory use. J. Cent. South Univ. 27, 811–823 (2020). https://doi.org/10.1007/s11771-020-4333-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4333-y

Keywords

关键词

Navigation