Skip to main content
Log in

Fate decisions mediated by crosstalk of autophagy and apoptosis in mammalian cells

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Autophagy is an important cell activity which is the process of formation of autophagosomes, docking with lysosomes and degradation. The intrinsic pathway of apoptosis involves mitochondrial outer membrane permeabilization (MOMP) and cytochrome c release followed by caspase activation. Many molecules, e.g., Ca2+ and mTOR, and different stresses such as endoplasmic reticulum (ER) stress and nutritional stress take part in these two processes. However, the mechanism of how they work together so as to determine cell fate decisions remains to be clarified. Here, we present a computational model for cell fate decisions based on intertwined dynamics with autophagy and apoptosis involving Ca2+, mTOR, and both ER stress and nutritional stress. In agreement with experimental observations, the model predicts that both Ca2+ and the stresses play critical roles in regulating the choice between autophagy and apoptosis in a combinatorial way. The model presented here might be a good candidate for providing the qualitative mechanism of cell fate decisions mediated by Ca2+, mTOR, and two kinds of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mizushima N, Autophagy: process and function. Genes Dev. 21(22), 2861–2873 (2007)

  2. Kundu, M., Kosmatka, M., Bardeesy, N., Hurley, R.L., Witters, L.A., DePinho, R.A., Cantley, L.C.: Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493–1502 (2008)

    Article  Google Scholar 

  3. Loos, B., Engelbrecht, A.M.: Cell death: A dynamic response concept. Autophagy 5(5), 590–603 (2009)

    Article  Google Scholar 

  4. Loos, B., Engelbrecht, A.M., Lockshin, R.A., et al.: The variability of autophagy and cell death susceptibility. Autophagy 9(9), 1270–1285 (2013)

    Article  Google Scholar 

  5. Tyson, J.J., Baumann, W.T., Chen, C., et al.: Dynamic modelling of oestrogen signalling and cell fate in breast cancer cells. Cell Commun. Signal. 11(7), 523–532 (2011)

  6. Kapuy, O., Vinod, P.K., Mandl, J., et al.: A cellular stress-directed bistable switch controls the crosstalk between autophagy and apoptosis. Mol. BioSyst. 9(2), 296–306 (2013)

    Article  Google Scholar 

  7. Sun, F., Xu, X., Wang, X., et al.: Regulation of autophagy by Ca2 +. Tumor Biol. 37(12), 15467–15476 (2016)

    Article  Google Scholar 

  8. Kapuy, O., Vinod, P.K.: mTOR inhibition increases cell viability via autophagy induction during endoplasmic reticulum stress-an experimental and modeling study. FEBS Open Bio 4, 704–713 (2014)

    Article  Google Scholar 

  9. Dorvash, M., Farahmandnia, M., Tavassoly, I.: A systems biology roadmap to decode mTOR control system in cancer. Interdiscip. Sci. 9, (2019). https://doi.org/10.1007/s12539-019-00347-6

  10. Nikoletopoulou, V., Markaki, M., Palikaras, K., et al.: Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta 1833(12), 3448–3459 (2013)

  11. Bhutia, S.K., Dash, R., Das, S.K., et al.: Mechanism of autophagy to apoptosis switch triggered in prostate cancer cells by antitumor cytokine melanoma differentiation-associated gene 7/interleukin-24. Cancer Res. 70(9), 3667–3676 (2010)

    Article  Google Scholar 

  12. Booth, L.A., Tavallai, S., Hamed, H.A., et al.: The role of cell signalling in the crosstalk between autophagy and apoptosis. Cell. Signal. 26(3), 549–555 (2014)

    Article  Google Scholar 

  13. Kaneko, M., Imaizumi, K., Saito, A., et al.: ER stress and disease: Toward prevention and treatment. Biol. Pharm. Bull. 40(9), 1337–1343 (2017)

    Article  Google Scholar 

  14. Orsolya, K., Papp, D., Tibor, V., et al.: Systems-level feedbacks of NRF2 controlling autophagy upon oxidative stress response. Antioxidants 7(3), 39 (2018)

    Article  Google Scholar 

  15. Liu, B., Oltvai, Z.N., Bayr, H., et al.: Quantitative assessment of cell fate decision between autophagy and apoptosis. Sci. Rep. 7(1), (2017). https://doi.org/10.1038/s41598-017-18001-w

  16. Tavassoly, I., Shajahan, A.N., Parmar, J., et al.: Dynamical modeling of the interaction between autophagy and apoptosis in mammalian cells: a systems pharmacology framework. CPT Pharmacometrics Syst. Pharmacol. 4(4), 263–272 (2013)

    Article  Google Scholar 

  17. Tavassoly, I.: Dynamics of cell fate decision mediated by the interplay of autophagy and apoptosis in cancer cells. Springer International Publishing, Switzerland (2015)

  18. Schleich, K., Lavrik, I.N.: Mathematical modeling of apoptosis. Cell Commun. Signal. 11(1), 44–44 (2013)

    Article  Google Scholar 

  19. Zhang, T., Brazhnik, P., Tyson, J.J.: Computational analysis of dynamical responses to the intrinsic pathway of programmed cell death. Biophys. J. 97(2), 415–434 (2009)

    Article  ADS  Google Scholar 

  20. Jin, H., Lei, J.: A mathematical model of cell population dynamics with autophagy response to starvation. Math. Biosci. 258, 1–10 (2014)

    Article  MathSciNet  Google Scholar 

  21. Kim, J., Kundu, M., Viollet, B.: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13(2), 132–141 (2011)

    Article  Google Scholar 

  22. Zhu, W., Chen, Q., Liu, Q., Zhou, Y., Yan, Y., et al.: Study on the interaction between autophagy and apoptosis of MC3T3-E1 at starvation state. J North Sichuan Medical College 2, 206–211(2015) (2015)

  23. Wang, Y., Wang, H., Zuo, L., et al.: Role of autophagy in hepatic stellate cell apoptosis induced by endoplasmic reticulum stress. Acta Univ. Med. Anhui 51(8), 1115–1119 (2016)

  24. Zhang, Y., Ren, S., Liu, Y., et al.: Inhibition of starvation-triggered endoplasmic reticulum stress, autophagy, and apoptosis in ARPE-19 cells by taurine through modulating the expression of calpain-1 and calpain-2. Int. J. Mol. Sci. 18(10), 2146 (2017)

    Article  Google Scholar 

  25. Liu, Y.W., et al.: Bifurcation-based approach reveals synergism and optimal combinatorial perturbation. J. Biol. Phys. 42(3), 399–414 (2016)

    Article  Google Scholar 

  26. Luo, M., Jiao, J., Wang, R.: Screening drug target combinations in disease-related molecular networks. BMC Bioinformatics 20(S7), (2019). https://doi.org/10.1186/s12859-019-2730-8

Download references

Funding

This research is supported by the National Natural Science Foundation of China (Grant No. 11971297) and the National Science Foundation of Shanghai (Grant No. 17ZR1410800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Ge or Ruiqi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We briefly describe the mathematical models used to study the crosstalk between the autophagy and apoptosis modules. Such a coupled network can be translated into a set of differential equations that describe how each component in the network changes with time. The rate of change of each component is described by ordinary differential equation based on either the law of mass action or Michaelis-Menten kinetics [5, 7, 14, 15].

1.1 Apoptosis

$$ d\left[ Casp\right]/ dt=\left( kacp+ kacp"\ast \left( Baxt- Baxc\right)\right)\ast \frac{Casp t- Casp}{Jcp+ Casp t- Casp}-\left( kicp+ kcp\ast Bcl2t\right)\ast \frac{Casp}{Jcp+ Casp}, $$
(1)
$$ d\left[ Bcl2\right]/ dt= ksb2-\left( kdb2+ kdb{2}^{\prime}\ast stress+ kdb2"\ast Casp\right)\ast Bcl2, $$
(2)
$$ d\left[ Baxc\right]/ dt= kasbx\ast \left( Baxt- Baxc\right)\ast \left( Bcl2t- Baxc\right)-\left( kdsbx+ kdb2+ kdb{2}^{\prime}\ast stress+ kdb2"\ast Casp\right)\ast Baxc. $$
(3)
Table 1 The parameters of the apoptotic module
Table 2 The parameters of the autophagy module

1.2 Autophagy

$$ d\left[ Bcl2\right]/ dt= ksb2-\left( kdb2+ kdb{2}^{\prime}\ast stress\right)\ast Bcl2, $$
(4)
$$ d\left[ Ca\right]/ dt= kout\ast \left( Cat- Ca\right)- kin\ast Bcl2t\ast Ca, $$
(5)
$$ d\left[ mTOR\right]/ dt=(kamtor)\ast \left( mTORT- mTOR\right)-\left( kimtor+ kimto{r}^{\prime}\ast Ca+ kmtor\ast ns\right)\ast mTOR, $$
(6)
$$ d\left[ Beca\right]/ dt=- kasbc\ast \left( Bcl2t- Becac\right)\ast Beca+\left( kdsbc+ kdb2+ kdb{2}^{\prime}\ast stress\right)\ast Beca c- kiau\ast mTOR\ast Beca, $$
(7)
$$ Becac= Bect- Beca. $$
(8)

1.3 The coupled model

$$ d\left[ Casp\right]/ dt=\left( kacp+ kac{p}^{\prime}\ast Beci+ kac p"\ast \left( Baxt- Baxc\right)+ kac{p}^{\prime \prime \prime}\ast Ca+ kac s\ast ULK1\right)\ast \frac{Caspt- Casp}{Jcp+ Caspt- Casp} $$
(9)
$$ -\left( kicp+ kic{p}^{\prime}\ast Beca\right)\ast \frac{Casp}{Jcp+ Casp},d\left[ Bcl2\right]/ dt= ksb2-\left( kdb2+ kdb{2}^{\prime}\ast stress+ kdb2"\ast Casp\right)\ast Bcl2t, $$
(10)
$$ d\left[ Beca\right]/ dt=- kasbc\ast \left( Bcl2t- Becac- Becic\right)\ast Beca+\left( kdsbc+ kdb2+ kdb{2}^{\prime}\ast stress+ kdb2"\ast Ca\mathrm{s}p\right)\ast Beca c $$
(11)
$$ +\left( kabc+ kab{c}^{\prime}\ast ULK1\right)\ast Beci-\left( kibc+ kib{c}^{\prime}\ast Ca sp+ kiau\ast mTOR\right)\ast Beca,d\left[ Ca\right]/ dt= kout\ast \left( Cat- Ca\right)- kin\ast Bcl2t\ast Ca, $$
(12)
$$ d\left[ Baxc\right]/ dt= kasbx\ast \left( Baxt- Baxc\right)\ast \left( Bcl2t- Baxc\right)-\left( kdsbx+ kdb2+ kdb{2}^{\prime}\ast stress+ kdb2"\ast Casp\right)\ast Baxc, $$
(13)
$$ d\left[ ULK1\right]/ dt= kaulk\ast \left( ULK1t- ULK1\right)-\left( kiulk+ kiul{k}^{\prime}\ast mTOR\right)\ast ULK1, $$
(14)
$$ d\left[ mTOR\right]/ dt=(kamtor)\ast \left( mTORT- mTOR\right)-\left( kimtor+ kimto{r}^{\prime}\ast Ca+ kmtor\ast ns\right)\ast mTOR, $$
(15)
$$ d\left[ Beci\right]/ dt=- kasbc\ast \left( Bcl2t- Becac- Becic\right)\ast Beci+\left( kdsbc+ kdb2+ kdb{2}^{\prime}\ast stress+ kdb2"\ast Casp\right)\ast Beci c $$
(16)
$$ - kabc\ast Beci+\left( kibc+ kib{c}^{\prime}\ast Casp\right)\ast Beca,d\left[ Becac\right]/ dt= kasbc\ast \left( Bcl2t- Becac- Becic\right)\ast Beca-\left( kdsbc+ kdb2+ kdb{2}^{\prime}\ast stress+ kdb2"\ast Casp\right)\ast Beca c $$
(17)
$$ + kabc\ast Becic-\left( kibc+ kib{c}^{\prime}\ast \mathrm{C} asp\right)\ast Becac, Becic= Bect- Beca- Beci- Beca c. $$
(18)
Table 3 The parameters of the coupled model
Table 4 The definition of variables

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Z., Wang, R. Fate decisions mediated by crosstalk of autophagy and apoptosis in mammalian cells. J Biol Phys 46, 133–149 (2020). https://doi.org/10.1007/s10867-020-09542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-020-09542-9

Keywords

Navigation