Skip to main content
Log in

Avascular tumour growth models based on anomalous diffusion

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

In this study, we model avascular tumour growth in epithelial tissue. This can help us to understand that how an avascular tumour interacts with its microenvironment and what type of physical changes can be observed within the tumour spheroid before angiogenesis. This understanding is likely to assist in the development of better diagnostics, improved therapies, and prognostics. In biological systems, most of the diffusive processes are through cellular membranes which are porous in nature. Due to its porous nature, diffusion in biological systems are heterogeneous. The fractional diffusion equation is well suited to model heterogeneous biological systems, though most of the early studies did not use this fact. They described tumour growth with simple diffusion-based model. We have developed a spherical model based on simple diffusion initially, and then the model is upgraded with fractional diffusion equations to express the anomalous nature of biological system. In this study, two types of fractional models are developed: one of fixed order and the other of variable order. The memory formalism technique is also included in these anomalous diffusion models. These three models are investigated from phenomenological point view by measuring some parameters for characterizing avascular tumour growth over time. Tumour microenvironment is very complex in nature due to several concurrent molecular mechanisms. Diffusion with memory (fixed as well as variable) formation may be an oversimplified technique, and does not reflect the detailed view of the tumour microenvironment. However, it is found that all the models offer realistic and insightful information of the tumour microenvironment at the macroscopic level, and approximate well the physical phenomena. Also, it is observed that the anomalous diffusion based models offer a closer description to clinical facts than the simple model. As the simulation parameters get modified due to different biochemical and biophysical processes, the robustness of the model is determined. It is found that the anomalous diffusion models are moderately sensitive to the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Folkman, J.: Tumor angiogenesis. In: Advances in Cancer Research, vol. 19, pp. 331–358. Academic Press (1974)

  2. Folkman, J.: The vascularization of tumors. Sci. Am. 234(5), 58–73 (1976)

    Article  ADS  Google Scholar 

  3. Muthukkaruppan, V.R., Kubai, L., Auerbach, R.: Tumor-induced neovascularization in the mouse eye. J. Natl. Cancer Inst. 69(3), 699–708 (1982)

    Google Scholar 

  4. Wirtz, D.: Particle-tracking microrheology of living cells: principles and applications. Annu. Rev. Biophys. 38, 301–326 (2009)

    Article  Google Scholar 

  5. Hackel, P.O., Zwick, E., Prenzel, N., Ullrich, A.: Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin. Cell Biol. 11(2), 184–189 (1999)

  6. Hirsch, F.R., Varella-Garcia, M., Bunn Jr., P.A., Di Maria, M.V., Veve, R., Bremnes, R.M., et al.: Epidermal growth factor receptor in non–small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J. Clin. Oncol. 21(20), 3798–3807 (2003)

  7. Koutras, A.K., Evans, T.J.: The epidermal growth factor receptor family in breast cancer. Onco Targets Ther. 1, 5 (2008)

  8. Masuda, H., Zhang, D., Bartholomeusz, C., Doihara, H., Hortobagyi, G.N., Ueno, N.T.: Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res. Treat. 136(2), 331–345 (2012)

  9. Zhang, X., Nie, D., Chakrabarty, S.: Growth factors in tumor microenvironment. Front Biosci. 15, 151–165

  10. Orme, M.E., Chaplain, M.A.J.: A mathematical model of the first steps of tumour-related angiogenesis: capillary sprout formation and secondary branching. Math. Med. Biol. 13(2), 73–98 (1996)

    Article  MATH  Google Scholar 

  11. Carmeliet, P., Jain, R.K.: Angiogenesis in cancer and other diseases. Nature 407(6801), 249 (2000)

    Article  Google Scholar 

  12. Macklin, P.: Biological Background. Cambridge University Press (2010)

  13. Hystad, M.E., Rofstad, E.K.: Oxygen consumption rate and mitochondrial density in human melanoma monolayer cultures and multicellular spheroids. Int. J. Cancer 57(4), 532–537 (1994)

    Article  Google Scholar 

  14. Freyer, J.P., Schor, P.L.: Regrowth of cells from multicell tumor spheroids. Cell and Tissue Kinetics 20(2), 249–249 (1987)

  15. Zetter, B.R.: Angiogenesis and tumour metastasis. Annu. Rev. Med. 49(1), 407–424 (1998)

    Article  Google Scholar 

  16. Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darnell, J.: Molecular Cell Biology, 4th edn. W. H. Freeman, New York (2000) ISBN-10: 0-7167-3136-3

  17. Hillen, F., Griffioen, A.W.: Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev. 26(3–4), 489–502 (2007)

    Article  Google Scholar 

  18. Anderson, A.R.: A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math. Med. Biol. 22(2), 163–186 (2005)

    Article  ADS  MATH  Google Scholar 

  19. Usuda, K., Saito, Y., Sagawa, M., Sato, M., Kanma, K., Takahashi, S., et al.: Tumour doubling time and prognostic assessment of patients with primary lung cancer. Cancer 74(8), 2239–2244 (1994)

    Article  Google Scholar 

  20. Kanashiki, M., Tomizawa, T., Yamaguchi, I., Kurishima, K., Hizawa, N., Ishikawa, H., et al.: Volume doubling time of lung cancers detected in a chest radiograph mass screening program: comparison with CT screening. Oncol. Lett. 4(3), 513–516 (2012)

    Article  Google Scholar 

  21. Greenspan, H.P.: Models for the growth of a solid tumour by diffusion. Stud. Appl. Math. 51(4), 317–340 (1972)

    Article  MATH  Google Scholar 

  22. Ward, J.P., King, J.R.: Mathematical modelling of avascular-tumour growth. Math. Med. Biol. 14(1), 39–69 (1997)

    Article  MATH  Google Scholar 

  23. Ward, J.P., King, J.R.: Mathematical modelling of avascular-tumour growth II: modelling growth saturation. Math. Med. Biol. 16(2), 171–211 (1999)

    Article  MATH  Google Scholar 

  24. Sherratt, J.A., Chaplain, M.A.: A new mathematical model for avascular tumour growth. J. Math. Biol. 43(4), 291–312 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Smallbone, K., Gavaghan, D.J., Gatenby, R.A., Maini, P.K.: The role of acidity in solid tumour growth and invasion. J. Theor. Biol. 235(4), 476–484 (2005)

    Article  MathSciNet  Google Scholar 

  26. Kiran, K.L., Jayachandran, D., Lakshminarayanan, S.: Mathematical modelling of avascular tumour growth based on diffusion of nutrients and its validation. Can. J. Chem. Eng. 87(5), 732–740 (2009)

    Article  Google Scholar 

  27. Grimes, D.R., Fletcher, A.G., Partridge, M.: Oxygen consumption dynamics in steady-state tumour models. R. Soc. Open Sci. 1(1), 140080 (2014)

    Article  ADS  Google Scholar 

  28. Grimes, D.R., Kannan, P., McIntyre, A., Kavanagh, A., Siddiky, A., Wigfield, S., et al.: The role of oxygen in avascular tumour growth. PLoS One 11(4), e0153692 (2016)

    Article  Google Scholar 

  29. Durang, X., Kwon, C., Park, H.: Overdamped limit and inverse-friction expansion for Brownian motion in an inhomogeneous medium. Phys. Rev. E 91(6), 062118 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. Lomholt, M.A., Ambjörnsson, T., Metzler, R.: Optimal target search on a fast-folding polymer chain with volume exchange. Phys. Rev. Lett. 95(26), 260603 (2005)

    Article  ADS  Google Scholar 

  31. Palmieri, B., Bresler, Y., Wirtz, D., Grant, M.: Multiple scale model for cell migration in monolayers: elastic mismatch between cells enhances motility. Sci. Rep. 5, 11745 (2015)

    Article  ADS  Google Scholar 

  32. Santamaría-Holek, I., Vainstein, M.H., Rubí, J.M., Oliveira, F.A.: Protein motors induced enhanced diffusion in intracellular transport. Physica A Statis. Mechan. Appl. 388(8), 1515–1520 (2009)

    Article  ADS  Google Scholar 

  33. Blackmon, R.L., Sandhu, R., Chapman, B.S., Casbas-Hernandez, P., Tracy, J.B., Troester, M.A., Oldenburg, A.L.: Imaging extracellular matrix remodeling in vitro by diffusion-sensitive optical coherence tomography. Biophys. J. 110(8), 1858–1868 (2016)

    Article  ADS  Google Scholar 

  34. Caputo, M., Cametti, C.: Diffusion with memory in two cases of biological interest. J. Theor. Biol. 254(3), 697–703 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gal, N., Weihs, D.: Experimental evidence of strong anomalous diffusion in living cells. Phys. Rev. E 81(2), 020903 (2010)

    Article  ADS  Google Scholar 

  36. Jiang, C., Cui, C., Li, L., Shao, Y.: The anomalous diffusion of a tumor invading with different surrounding tissues. PLoS One 9(10), e109784 (2014)

    Article  ADS  Google Scholar 

  37. Murray, J.D.: Mathematical Biology. I An Introduction, Interdisciplinary Applied Mathematics, 17. Mathematical Biology. II Spatial Models and Biomedical Applications 3rd edition. Interdisciplinary Applied Mathematics, 18. Springer Verlag, New York (2002)

  38. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36(6), 1413–1423 (2000a)

    Article  ADS  Google Scholar 

  39. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36(6), 1403–1412 (2000b)

    Article  ADS  Google Scholar 

  40. Metzler, R., Klafter, J.: The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Basu, S.K., Kumar, N.: Modelling and Simulation of Diffusive Processes. Springer International Pu (2016)

  42. Atangana, A., & Secer, A. (2013). A note on fractional order derivatives and table of fractional derivatives of some special functions. In abstract and applied analysis (Vol. 2013). Hindawi.

  43. Kobelev, Y. L., Kobelev, L. Y., & Klimontovich, Y. L.: Statistical physics of dynamic systems with variable memory. Dokl. Phys. 48(6), 285–289 (2003)

  44. Liotta, L.A.: Tumor invasion and the extracellular matrix. Lab. Investig. 49, 636–649 (1983)

    Google Scholar 

  45. Knierim, M., Paweletz, N.: Tumor-related angiogenesis. Crit. Rev. Oncol. Hematol. 9, 197–242 (1989)

    Article  Google Scholar 

  46. Hynes, R.O.: Interactions of Fibronectins. In: Fibronectins, pp. 84–112. Springer, New York, NY (1990)

    Book  Google Scholar 

  47. Birdwell, C.R., Brasier, A.R., Taylor, L.A.: Two-dimensional peptide mapping of fibronectins from bovine aortic endothelial cells and bovine plasma. Biochem. Biophys. Res. Commun. 97(2), 574–581 (1980)

    Article  Google Scholar 

  48. Alessandri, G., Raju, K.S., Gullino, P.M.: Interaction of gangliosides with fibronectin in the mobilization of capillary endothelium. Possible influence on the growth of metastasis. Invasion Metastasis 6(3), 145–165 (1986)

    Google Scholar 

  49. Schor, S.L., Schor, A.M., Bazill, G.W.: The effects of fibronectin on the migration of human foreskin fibroblasts and Syrian hamster melanoma cells into three-dimensional gels of native collagen fibres. J. Cell Sci. 48(1), 301–314 (1981)

    Google Scholar 

  50. Johansson, S., Gustafson, S.: Identification of a fibronectin receptor specific for rat liver endothelial cells. Exp. Cell Res. 172(2), 425–431 (1987)

    Article  Google Scholar 

  51. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell, 3rd edn, p. 1294. Garland Publishing. Inc, New York (1994)

    Google Scholar 

  52. Smith, H.S., Riggs, J.L., Mosesson, M.W.: Production of fibronectin by human epithelial cells in culture. Cancer Res. 39(10), 4138–4144 (1979)

  53. Oliveira, F.A., Ferreira, R., Lapas, L.C., Vainstein, M.H.: Anomalous diffusion: a basic mechanism for the evolution of inhomogeneous systems. arXiv, 1902.03157 (2019)

  54. Chen, W., Sun, H., Zhang, X., Korošak, D.: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59(5), 1754–1758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  55. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell. Garland Science, New York (2002)

    Google Scholar 

  56. Ashrafuzzaman, M., & Tuszynski, J. A. (2012). Membrane Biophysics. Springer Science & Business Media.

    Google Scholar 

  57. Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44(2) (2006). https://doi.org/10.1029/2005RG000178

  58. Huang, Q., Huang, G., Zhan, H.: A finite element solution for the fractional advection–dispersion equation. Adv. Water Resour. 31(12), 1578–1589 (2008)

    Article  ADS  Google Scholar 

  59. Bear, J.: Hydraulics of Groundwater. Courier Corporation (2012)

  60. Ellsworth, T.R., Shaouse, P.J., Jobes, J.A., Fargerlund, J., Skaggs, T.H.: Solute transport in unsaturated soil: Experimental design, parameter estimation, and model discrimination. Soil Sci. Soc. Am. J. 60(2), 397–407 (1996)

    Article  ADS  Google Scholar 

  61. Kalwarczyk, T., Kwapiszewska, K., Szczepanski, K., Sozanski, K., Szymanski, J., Michalska, B., et al.: Apparent anomalous diffusion in the cytoplasm of human cells: the effect of probes’ polydispersity. J. Phys. Chem. B 121(42), 9831–9837 (2017)

    Article  Google Scholar 

  62. Pachepsky, Y., Benson, D., Rawls, W.: Simulating scale-dependent solute transport in soils with the fractional advective–dispersive equation. Soil Sci. Soc. Am. J. 64(4), 1234–1243 (2000)

    Article  ADS  Google Scholar 

  63. Pang, L., Hunt, B.: Solutions and verification of a scale-dependent dispersion model. J. Contam. Hydrol. 53(1–2), 21–39 (2001)

    Article  ADS  Google Scholar 

  64. Zhang, R., Huang, K., Xiang, J.: Solute movement through homogeneous and heterogeneous soil columns. Adv. Water Resour. 17(5), 317–324 (1994)

    Article  ADS  Google Scholar 

  65. El-Sayed, A.M.A., El-Mesiry, A.E.M., El-Saka, H.A.A.: On the fractional-order logistic equation. Appl. Math. Lett. 20(7), 817–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  66. Gatenby, R.A., Vincent, T.L.: Application of quantitative models from population biology and evolutionary game theory to tumor therapeutic strategies. Mol. Cancer Ther. 2(9), 919–927 (2003)

    Google Scholar 

  67. Gerlee, P.: The model muddle: in search of tumor growth laws. Cancer Res. 73(8), 2407–2411 (2013)

    Article  Google Scholar 

  68. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25(8–12), 861–884 (2002)

    Article  ADS  Google Scholar 

  70. Morales-Casique, E., Neuman, S.P., Guadagnini, A.: Non-local and localized analyses of non-reactive solute transport in bounded randomly heterogeneous porous media: theoretical framework. Adv. Water Resour. 29(8), 1238–1255 (2006a)

    Article  ADS  Google Scholar 

  71. Morales-Casique, E., Neuman, S.P., Guadagnini, A.: Nonlocal and localized analyses of nonreactive solute transport in bounded randomly heterogeneous porous media: computational analysis. Adv. Water Resour. 29(9), 1399–1418 (2006b)

    Article  ADS  Google Scholar 

  72. Guerrero-Aconcha, U.E.: The Diffusion Coefficient of Liquid and Gaseous Solvents in Heavy Oil and Bitumen. Doctoral dissertation, University of Calgary (2009)

    Google Scholar 

  73. Zhang, Y., Benson, D.A., Meerschaert, M.M., Scheffler, H.P.: On using random walks to solve the space-fractional advection-dispersion equations. J. Stat. Phys. 123(1), 89–110 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Zhang, Y., Benson, D.A., Meerschaert, M.M., LaBolle, E.M., Scheffler, H.P.: Random walk approximation of fractional-order multiscaling anomalous diffusion. Phys. Rev. E 74(2), 026706 (2006)

    Article  ADS  Google Scholar 

  75. Cushman, J.H., Ginn, T.R.: Fractional advection-dispersion equation: a classical mass balance with convolution-Fickian flux. Water Resour. Res. 36(12), 3763–3766 (2000)

    Article  ADS  Google Scholar 

  76. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47(3), 1760–1781 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  77. Sherratt, J.A., Murray, J.D.: Mathematical analysis of a basic model for epidermal wound healing. J. Math. Biol. 29(5), 389–404 (1991)

    Article  MATH  Google Scholar 

  78. Casciari, J.J., Sotirchos, S.V., Sutherland, R.M.: Glucose diffusivity in multicellular tumour spheroids. Cancer Res. 48(14), 3905–3909 (1988)

    Google Scholar 

  79. Busini, V., Arosio, P., Masi, M.: Mechanistic modelling of avascular tumour growth and pharmacokinetics influence—part I. Chem. Eng. Sci. 62(7), 1877–1886 (2007)

    Article  Google Scholar 

  80. Burton, A.C.: Rate of growth of solid tumours as a problem of diffusion. Growth 30(2), 157–176 (1966)

    Google Scholar 

  81. Anderson, A.R., Chaplain, M.A.J.: Continuous and discrete mathematical models of tumour-induced angiogenesis. Bull. Math. Biol. 60(5), 857–899 (1998)

    Article  MATH  Google Scholar 

  82. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1), 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  83. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34(1), 200–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  84. Oncologist’s Note: https://notesofoncologist.com/2018/02/26/how-fast-do-tumours-grow/ (accessed on 28th January, 2019) (2019)

  85. Basu, S.K., Roy, A.: Computer simulation of long-term vegetation status in landslide-prone areas in the Himalayan region. Simulation 80(10), 511–525 (2004)

    Article  Google Scholar 

  86. Ehrlén, J., Van Groenendael, J., De Kroon, H.: Reliability of elasticity analysis: reply to Mills et al. Conserv. Biol. 15(1), 278–280 (2001)

    Article  Google Scholar 

  87. Law, A.M., Kelton, W.D., Kelton, W.D.: Simulation Modelling and Analysis, vol. 3. McGraw-Hill, New York (2000)

    MATH  Google Scholar 

  88. Storer, N.P., Peck, S.L., Gould, F., Van Duyn, J.W., Kennedy, G.G.: Sensitivity analysis of a spatially-explicit stochastic simulation model of the evolution of resistance in Helicoverpa zea (Lepidoptera: Noctuidae) to Bt transgenic corn and cotton. J. Econ. Entomol. 96(1), 173–187 (2003)

    Article  Google Scholar 

  89. Jenerette, G.D., Wu, J.: Analysis and simulation of land-use change in the Central Arizona–Phoenix region. USA. Landsc. Ecol. 16(7), 611–626 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Sonya Bahar, Editor-in-Chief of Journal of Biological Physics for being supportive towards the publication of this paper. We show our sincere gratitude to the anonymous reviewer(s) whose valuable comments helped us greatly to improve the presentation. We are sincerely thankful to Dr. Naveen Kumar, Department of Mathematics, Banaras Hindu University, Varanasi 221005, India for his cooperation and help. Special thanks go to Debarpita Santra, PhD scholar, Department of Computer Science and Engineering, University of Kalyani, West Bengal 741245, India for her valuable inputs during the revision of the manuscript. The first author is also thankful to the University Grants Commission, Government of India, for supporting him by a Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sounak Sadhukhan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A. Non-dimensionalization of Eq. (2)

Non-dimensionalize Eq. (2) by rescaling the distance l with time τ = l2/DC. Proliferative cell, quiescent cell, necrotic cell, nutrients and EGF concentrations, and fibronectin are rescaled with P0, Q0, N0, C0, E0, and F0 respectively, where P0, Q0, N0, C0, E0, and F0 are the appropriate reference variables. Therefore,

$$ {P}^{\ast }=\frac{P}{P_0},{Q}^{\ast }=\frac{Q}{Q_0},{N}^{\ast }=\frac{N}{N_0},{C}^{\ast }=\frac{C}{C_0},{E}^{\ast }=\frac{E}{E_0},{F}^{\ast }=\frac{F}{F_0},{t}^{\ast }=\frac{t}{\tau } $$

We obtain the new system of Eqs. (3) (by dropping the stars), where,

$$ {\displaystyle \begin{array}{c}{\eta}^{\ast }=\frac{\eta {E}_0}{D_C},\kern0.5em {\rho}^{\ast }=\frac{\rho {F}_0}{D_C},\kern0.5em {\alpha}^{\ast }=\frac{\alpha {l}^2}{D_C},\kern0.5em {\beta}^{\ast }=\frac{\beta {l}^2}{D_C},\kern0.5em {d}_P^{\ast }=\frac{d_P{l}^2}{D_C},\kern0.5em {\omega}^{\ast }=\frac{\beta {l}^2{P}_0}{D_C{Q}_0},\kern0.5em {\gamma}^{\ast }=\frac{\gamma {l}^2}{D_C},\kern0.5em {d}_Q^{\ast }=\frac{d_Q{l}^2}{D_C},\kern0.5em {\lambda}^{\ast }=\frac{\gamma {l}^2{Q}_0}{D_C{N}_0},\\ {}{\mu}_C^{\ast }=\frac{\mu_C{l}^2}{D_C},\kern0.5em {w}_1^{\ast }=\frac{w_1{l}^2}{D_C},\kern0.5em {w}_2^{\ast }=\frac{w_2{l}^2{P}_0}{D_C},\kern0.5em {w}_3^{\ast }=\frac{w_3{l}^2{Q}_0}{D_C},\kern0.5em {\mu}_E^{\ast }=\frac{\mu_E{l}^2}{D_C},\kern0.5em {k}_1^{\ast }=\frac{k_1{l}^2}{D_C},\kern0.5em {k}_2^{\ast }=\frac{k_2{l}^2{P}_0}{D_C},\kern0.5em {k}_3^{\ast }=\frac{k_3{l}^2{Q}_0}{D_C},\\ {}\begin{array}{cccccccc}{\mu}_{FP}^{\ast }=\frac{\mu_{FP}{l}^2{P}_0}{D_C{F}_0},& {\mu}_{FQ}^{\ast }=\frac{\mu_{FQ}{l}^2{Q}_0}{D_C{F}_0},& {z}_1^{\ast }=\frac{z_1{l}^2{P}_0}{D_C},& {z}_2^{\ast }=\frac{z_2{l}^2{P}_0}{D_C},& {D}_{PC}=\frac{D_P}{D_C},& {D}_{QC}=\frac{D_Q}{D_C},& {D}_{CC}=\frac{D_C}{D_C},& \mathrm{and}\end{array}\\ {}{D}_{EC}=\frac{D_E}{D_C}\end{array}} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadhukhan, S., Basu, S.K. Avascular tumour growth models based on anomalous diffusion. J Biol Phys 46, 67–94 (2020). https://doi.org/10.1007/s10867-020-09541-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-020-09541-w

Keywords

Navigation