Skip to main content
Log in

Microseismic Noise before and after Strong Earthquakes: Case Study of Chilean Subduction Zone

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—In this work, we study the parameters of microseismic noise in the vicinity of the Chilean subduction zone in order to detect oscillations of a block–fault system, similar to those identified by processing the results of the previous laboratory experiment. The analysis is based on the data recorded by the broadband seismic stations of the international seismic network IRIS. We calculated the spectral parameters of microseismic noise before and after several earthquakes. It is established that before the earthquakes with Мw ≥ 8, the calculated value of spectral centroid decreases by 0.12–0.26 Hz. The decrease in the value of spectral centroid in the range from 0.008 to 0.45 Hz can be as long as up to two days. The proposed approach can be a new instrument useful for real-time monitoring of active faults of various scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Adushkin, V.V., Kishkina, S.B., and Kocharyan, G.G., New approach to monitoring induced earthquakes, J. Min. Sci., 2017, vol. 53, no. 1, pp. 1–11.

    Article  Google Scholar 

  2. Bath, B.M., Reliability and presentation of spectra, Dev. Solid Earth Geophys., 1974, vol. 7, pp. 193–231.

    Article  Google Scholar 

  3. Besedina, A.N. and Ostapchuk, A.A., Parametric analysis of the low-frequency seismic noise as the basis for monitoring changes of the stress-strain state of rock, AIP Conference Proceedings, 2018, no. 2051, p. 020030. https://doi.org/10.1063/1.5083273

  4. Contreras, V. and Boroschek, R., Strong ground motion attenuation relations for Chilean subduction zone interface earthquakes, Proccedings in 15th World Conference on Earthquake Engineering, Lisboa, Portugal, 2012.

  5. Hedayat, A., Pyrak-Nolte, L.J., and Bobet, A., Precursors to the shear failure of rock discontinuities, Geophys. Res. Lett., 2014, vol. 41, pp. 5467–5475. https://doi.org/10.1002/2014GL060848

    Article  Google Scholar 

  6. Johnson, P.A. and Jia, X., Nonlinear dynamics, granular media and dynamic earthquake triggering, Nature, 2005, vol. 437, no 6, pp. 871–874.

    Article  Google Scholar 

  7. Kocharyan, G.G., Scale effect in seismotectonics, Geodyn. Tectonophys., 2014, vol. 5, no. 2, pp. 353–385. https://doi.org/10.5800/GT2014520133

    Article  Google Scholar 

  8. Kocharyan, G.G. and Kabychenko, N.V., Manifestation of block movements in a long-period seismic background, in Geofizicheskiye protsessy v nizhnikh i verkhnikh obolochkakh Zemli (Geophysical Processes in the Lower and Upper Shells of the Earth), Zetser Yu.I., Ed., Moscow: IDG RAN, 2003, Book 1, pp. 98–107.

  9. Kocharyan, G.G. and Spivak, A.A., Dinamika deformirovaniya blochnykh massivov gornykh porod (The Dynamics of Deformation of Block Massifs of Rocks), Moscow: Akademkniga, 2003.

  10. Kocharyan, G.G., Kostyuchenko, V.N., and Pavlov, D.V., Initiation of deformation processes in the Earth’s crust by small perturbations, Phys. Mesomech., 2004, vol. 7, nos. 1–2, pp. 5–21.

    Google Scholar 

  11. Kocharyan, G.G., Ostapchuk, A.A., and Pavlov, D.V., Traces of laboratory earthquake nucleation in the spectrum of ambient noise, Sci. Rep., 2018a, no. 8. p. 10764. https://doi.org/10.1038/s41598-018-28976-9

  12. Kocharyan, G.G., Ostapchuk, A.A., Pavlov, D.V., and Budkov, A.M., On the prospect of detecting the process of earthquake preparation in the spectrum of seismic noise: a laboratory experiment, Izv.,Phys. Solid Earth, 2018b, vol. 54, no. 6, pp. 914–925.

    Article  Google Scholar 

  13. Konno, K. and Ohmachi, T., Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor, Bull. Seismol. Soc. Am., 1998, vol. 88, no. 1, pp. 228–241.

    Google Scholar 

  14. Leyton, F., Ruiz, J., Campos, J., and Kausel, E., Intraplate and interplate earthquakes in Chilean subduction zone: A theoretical and observational comparison, Phys. Earth Planet. Inter, 2009, no. 175, pp. 37–46. https://doi.org/10.1016/j.pepi.2008.03.017

  15. Lowrie, W., Fundamentals of Geophysics2nd ed., Cambridge: Cambridge Univ. Press, 2007.

    Book  Google Scholar 

  16. Lyubushin, A.A., Synchronization trends and rhythms of multifractal parameters of the field of low-frequency microseismic, Izv.Phys. Solid Earth, 2009, no. 45, pp. 381–394.

  17. Lyubushin, A.A., Cluster analysis of low-frequency microseismic noise, Izv.,Phys. Solid Earth, 2011, vol. 47, no. 6, pp. 488–495.

    Article  Google Scholar 

  18. Lyubushin, A.A., Coherence between the fields of low-frequency seismic noise in Japan and California, Izv.,Phys. Solid Earth, 2016, vol. 52, no. 6, pp. 810–820.

    Article  Google Scholar 

  19. Montalva, G.A., Bastías, N., and Rodriguez-Marek, A., Ground-motion prediction equation for the Chilean subduction zone, Bull. Seismol. Soc. Am., 2017, vol. 107, no. 2, pp. 901–911. https://doi.org/10.1785/0120160221

    Article  Google Scholar 

  20. Nakamura, Y., A method for dynamic characteristic estimation of subsurface using microtremor on the ground surface, Q. Rep. Railw. Tech. Res. Inst., 1989, vol. 30, no. 1, pp. 25–33.

    Google Scholar 

  21. Nakamura, Y., Clear identification of fundamental idea of Nakamura’s technique and its applications, 12WCEE, 2000, no. 2656. pp. 1–8.

  22. Nishida, K., Kawakatsu, H., Fukao, Y., and Obara, K., Background Love and Rayleigh waves simultaneously generated at the Pacific Ocean floors, Geophys. Res. Lett., 2008, vol. 35, Paper ID L16307.

  23. Nishida, K., Earth’s background free oscillations, Annu. Rev. Earth Planet. Sci., 2013, vol. 41, no. 1, pp. 719–740. https://doi.org/10.1146/annurev-earth-050212-124020

    Article  Google Scholar 

  24. Parolai, S., Investigation of site response in urban areas by using earthquake data and seismic noise, in New Manual of Seismological Observatory Practice (NMSOP-2), Bormann, P., Ed., Potsdam: Deutsches GeoForschungszentrum GFZ; IASPEI, 2012, pp. 1–38. https://doi.org/10.2312/GFZ.NMSOP-2_ch14

  25. Peterson, J., Observations and modeling of seismic background noise, U.S.Geol. Surv. Tech. Open File Rep., 1993, no. 93–322.

  26. Rezaei, S. and Choobbasti, A.J., Application of the microtremor measurements to a site effect study, Earthquake Sci., 2017, vol. 30, no. 3, pp. 157–16. https://doi.org/10.1007/s11589-017-0187-2

    Article  Google Scholar 

  27. Sadovskii, M.A., Kocharyan, G.G., and Rodionov, V.N., On the mechanics of a block massif, Dokl. Akad. Nauk SSSR, 1988, vol. 302, no. 2, pp. 306–307.

    Google Scholar 

  28. Saltykov, V.A., Tidal effects and amplitude-dependent dissipation in seismicity, Fiz. Mezomekh., 2014, vol. 17, no. 5, pp. 103−110.

    Google Scholar 

  29. Saltykov, V.A. and Kugaenko, Yu.A., Spatial relation between the tidal component of seismic noise and development zones of strong earthquakes (from long-term regular observations on the Kamchatka Peninsula), Izv.,Phys. Solid Earth, 2007, vol. 43, no. 9, pp. 754−765.

    Article  Google Scholar 

  30. Saltykov, V.A., Kugaenko, Yu.A., Sinitsyn, V.I., and Chebrov, V.N., Precursors of large Kamchatka earthquakes based on monitoring of seismic noise, J. Volcanol. Seismol., 2008, no. 2, pp. 94−107.

  31. Sobolev, G.A., Kontseptsiya predskazuyemosti zemletryaseniy na osnove dinamiki seysmichnosti pri triggernom vozdeystvii (The Concept of Earthquake Predictability Based on the Dynamics of Seismicity under Trigger Action), Moscow: IFZ RAN, 2011.

  32. Sobolev, G.A., Seysmicheskii shum (Seismic Noise), Moscow: Nauka Obraz., 2014.

  33. Sobolev, G.A. and Lyubushin, A.A., Microseismic impulses as earthquake precursors, Izv.,Phys. Solid Earth, 2006, vol. 42, no. 9, pp. 721−733.

    Article  Google Scholar 

  34. Sobolev, G.A. and Lyubushin, A.A., Microseismic anomalies before the Sumatra earthquake of December 26, 2004, Izv.,Phys. Solid Earth, 2007, vol. 43, no. 5, pp. 341−353.

    Article  Google Scholar 

  35. Sobolev, G.A., Lyubushin, A.A., Jr., and Zakrzhevskaya, N.A., Synchronization of microseismic variations within a minute range of periods, Izv.,Phys. Solid Earth, 2005, vol. 41, no. 8, pp. 599−621.

    Google Scholar 

  36. Sovic, I., Sariri, K., and Zivcic, M., High frequency microseismic noise as possible earthquake precursor, Res. Geophys., 2003, vol. 3, no. 1, pp. 8–12. https://doi.org/10.4081/rg.2013.e2

    Article  Google Scholar 

  37. Tan Kang Chin, Cheach Yi Ben, and Lau Tze Liang, Estimation of ground structure at USM using microtremor observation technique, E3S Web of Conferences, ICCEE, 2018, vol. 65, no. 06001, pp. 1–9. https://doi.org/10.1051/e3sconf/20186506001

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Dr. P.N. Shebalin and Dr. B.B. Smirnov for their comments that helped to improve the presentation of the material.

Funding

This work was carried out as part of the state contract (project no. 0146-2019-0006) and supported by the Russian Foundation for Basic Research (projects nos. 18-05-00923 and 19-05-00378).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Besedina.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besedina, A.N., Kishkina, S.B., Kocharyan, G.G. et al. Microseismic Noise before and after Strong Earthquakes: Case Study of Chilean Subduction Zone. Izv., Phys. Solid Earth 56, 151–161 (2020). https://doi.org/10.1134/S1069351320020020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351320020020

Keywords:

Navigation