Skip to main content
Log in

Bounds for Pore Space Parameters of Petroelastic Models of Carbonate Rocks

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—This work is devoted to constructing parametric mathematical models of effective elastic properties of carbonate rocks based on the effective medium theory (petroelastic models). These models have recently been particularly in demand for exploration geophysics because they link the elastic properties of hydrocarbon reservoir rocks with the parameters of the void space—the shape and volume concentration of pores, cracks, and voids, and the degree of their connectivity. These parameters are determined from the measured velocities of elastic waves. However, the number of the unknown model parameters is, as a rule, larger than the number of the measured quantities so that such problems are underdetermined. In this case, the inverse problem of finding the model parameters may have an infinite number of solutions. Constraining the sought parameters with taking into account their physical meaning and existing experimental data can significantly increase the reliability of the obtained results and reduce the region of possible solutions of the inverse problem. In this work, we propose new approaches for constraining variations in the unknown model parameters which cannot be established from direct measurements, namely, for the connectivity of voids, crack porosity, and crack aspect ratio. Based on the correlation between the parameter of connectivity of voids and permeability, we developed an approach for constraining the range of variations in the parameter of connectivity of voids which relies on the Kozeny–Carman equation. The results of triaxial testing of rock samples on a servo hydraulic testing machine (press) are used for estimating the upper limit of crack porosity and assessing the crack shape. The characteristics of microstructure of the studied rocks obtained with the use of the established constraints increase the reliability of the constructed petroelastic models for carbonate rocks. These models can be subsequently used in various geophysical studies implying a relationship between the analyzed processes or properties and the microstructure of the rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Atkinson, B.K., Subcritical crack growth in geological materials, J. Geophys. Res.: Solid Earth, 1984, vol. 89, no. B6, pp. 4077–4114.

    Article  Google Scholar 

  2. Bayuk, I.O., The theoretical basis for determining the effective physical properties of hydrocarbon reservoirs, in Akustika neodnorodnykh sred. YezhegodnikRoss. Akust. Ob-va. Sb. trudov nauch. shkoly prof. S.A. Rybaka (Acoustics of Inhomogeneous Media: Yearbook of Russ. Acoust. Soc., Proc. of Scientific School of Prof. S.A. Rybak), vol. 12, Moscow: GEOS, 2011, pp. 107–120.

  3. Bayuk, I.O., Interdisciplinary approach to forecasting macroscopic and filtration-capacitive properties of hydrocarbon reservoirs, Doctoral (Phys.-Math.) Dissertation, Moscow: IPE RAS, 2013.

  4. Bayuk, I.O. and Chesnokov, E.M., Correlation between elastic and transport properties of porous cracked anisotropic media, Phys. Chem. Earth, 1998, vol. 23, no. 3, pp. 361–366.

    Article  Google Scholar 

  5. Bayuk, I.O. and Chesnokov, E.M., Transport properties of porous cracked anisotropic media, in Porous Media: Physics, Models, Simulations, Dmitrievsky, A., and Panfilov, M., Eds., 2000, Singapore: World Scientific Publ., pp. 325–336.

    Google Scholar 

  6. Bayuk, I.O., Ammerman, M., and Chesnokov, E.M., Elastic moduli of anisotropic clay, Geophysics, 2007, vol. 72, no. 5, pp. D107–D117.

    Article  Google Scholar 

  7. Bayuk, I.O., Ammerman, M., and Chesnokov, E.M., Upscaling of elastic properties of anisotropic sedimentary rocks, Geophys. J. Int., 2008, vol. 172, no. 2, pp. 842–860.

    Article  Google Scholar 

  8. Bayuk, I.O., Beloborodov, D.E., Berezina, I.A., Gilyazetdinova, D.R., Krasnova, M.A., Korost, D.V., Patonin, A.V., Ponomarev, A.V., Tikhotskii, S.A., Fokin, I.V., Khamidullin, R.A., and Tselmovich, V.A., Elastic properties of core samples under confining pressure, Seism. Technol., 2015, no. 2, pp. 36–45.

  9. Berg, C.A., Deformation of fine cracks under high pressure and shear, J. Geophys. Res., 1965, vol. 70, no. 14, pp. 3447–3452.

    Article  Google Scholar 

  10. Carman, P.C., Fluid flow through granular beds, Chem. Eng. Res. Des., 1937, vol. 75, pp. S32–S48.

    Article  Google Scholar 

  11. Chesnokov, E.M., Tiwary, D.K., Bayuk, I.O., Sparkman, M.A., and Brown, R.L., Mathematical modelling of anisotropy of illite-rich shale, Geophys. J. Int., 2009, vol. 178, no. 3, pp. 1625–1648.

    Article  Google Scholar 

  12. Chesnokov, E., Bayuk, I., and Metwally, Y., Inversion of shale microstructure parameters from permeability measurements, Expanded Abstracts of 80-th SEG Annual Meeting, 2010, pp. 2634–2638.

  13. DiGiovanni, A.A., Fredrich, J.T., Holcomb, D.J., and Olsson, W.A., Micromechanics of Compaction in an Analogue Reservoir Sandstone, Proc. 4th North American Rock Mechanics Symposium, Seattle, American Rock Mechanics Association, 2000.

  14. Ehrenberg, S.N., Gregor, P., Eberli, G.P., and Baechle, G., Porosity–permeability relationships in Miocene carbonate platforms and slopes seaward of the Great Barrier Reef, Australia (ODP Leg 194, Marion Plateau), Sedimentology, 2006, vol. 53, no. 6, pp. 1289–1318.

    Article  Google Scholar 

  15. Federal’noe gosudarstvennoe bjudzhetnoe uchrezhdenie nauki Institut geologii mestorozhdenij, petrografii, mineralogii i geokhimii Rossijskoj akademii nauk (IGEM RAN) (RU), Patent RU 2515332 C1, Date of publication: 10.05.2014, Bull. no. 13.

  16. Fournier, F. and Borgomano, J., Critical porosity and elastic properties of microporous mixed carbonate-siliciclastic rocks, Geophysics, 2009, vol. 74, no. 2, pp. E93–E109.

    Article  Google Scholar 

  17. Fredrich, J.T., Evans, B., and Wong, T.-F., Micromechanics of the brittle to plastic transition in Carrara marble, J. Geophys. Res.: Solid Earth, 1989, vol. 94, no. B4, pp. 4129–4145.

    Article  Google Scholar 

  18. Fredrich, J.T., Evans, B., and Wong, T.-F., Effect of grain size on brittle and semibrittle strength: Implications for micromechanical modelling of failure in compression, J. Geophys. Res.: Solid Earth, 1990, vol. 95, no. B7, pp. 10907–10920.

    Article  Google Scholar 

  19. Ghasemi, M. and Bayuk I., Petroelastic model of oolitic limestone at the core scale, Expo. Oil Gas, 2018a, no. 3, pp. 36–40.

  20. Ghasemi, M. and Bayuk I., Petroelastic modeling of carbonate rocks using a dual porosity model, Expo. Oil Gas, 2018b, no. 5, pp. 21–25.

  21. Gleeson, T., Smith, L., Moosdorf, N., Hartmann, J., Dürr, H.H., Manning, A.H., Van Beek, L.P.H, and Jellinek, A.M., Mapping permeability over the surface of the Earth, Geophys. Res. Lett., 2011, vol. 38, no. 2, Paper ID L02401.

  22. Gu, Y., Bao, Z., Lin, Y., Qin, Z., Lu, J., and Wang, H., The porosity and permeability prediction methods for carbonate reservoirs with extremely limited logging data: Stepwise regression vs. N-way analysis of variance, J. Nat. Gas Sci. Eng., 2017, vol. 42, pp. 99–119.

    Article  Google Scholar 

  23. Hubbert, K. and Rubey, W.W., Role of fluid pressure in mechanics of overthrust faulting: I. Mechanics of fluid-filled porous solids and its application to overthrust faulting, GSA Bull., 1959, vol. 70, no. 2, pp. 115–166.

    Article  Google Scholar 

  24. Jakobsen, M. and Chapman, M., Unified theory of global flow and squirt flow in cracked porous media, Geophysics, 2009, vol. 74, no. 2, pp. WA65–WA76.

    Article  Google Scholar 

  25. Jakobsen, M., Hudson, J.A., and Johansen, T.A., T-Matrix approach to shale acoustics, Geophys. J. Int., 2003, vol. 154, no. 2, pp. 533–558.

    Article  Google Scholar 

  26. Jiang, T., Connection of elastic and transport properties: effective medium study in anisotropic porous media, PhD Thesis, University of Houston, 2013.

  27. Jiang, T. and Chesnokov, E.M., Elastic moduli relation to microstructure properties in porous media using GSA modeling, Expanded Abstracts of 82-th SEG Annual Meeting, 2012, Paper segam2012-1038.1.

  28. Jiang, X.-W., Wang, X.-S., and Wan, L., Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media, Hydrogeol. J., 2010, vol. 18, no. 4, pp. 839–850.

    Article  Google Scholar 

  29. Ju, Y., Masce, A., Yang, Y., Peng, R., and Mao, L., Effects of Pore Structures on Static Mechanical Properties of Sandstone, J. Geotech. Geoenviron. Eng., 2013, vol. 139, no. 10, pp. 1745–1755.

    Article  Google Scholar 

  30. Lawn, B., Fracture of Brittle Solids, Cambridge: Cambridge Univ. Press, 1993.

    Book  Google Scholar 

  31. Lehner, F.K., Thermodynamics of rock deformation by pressure solution, in Deformation Processes in Minerals, Ceramics and Rocks, NewYork: Springer, 1990, pp. 296–333.

    Google Scholar 

  32. Lisabeth, H.P. and Zhu, W., Effect of temperature and pore fluid on the strength of porous limestone, J. Geophys. Res.: Solid Earth, 2015, vol. 120, no. 9, pp. 6191–6208.

    Article  Google Scholar 

  33. Ma, H.M. and Gao, X.-L., Strain gradient solution for a finite-domain Eshelby-type plane strain inclusion problem and Eshelby’s tensor for a cylindrical inclusion in a finite elastic matrix, Int. J. Solids Struct., 2011, vol. 48, no. 1, pp. 44–55.

    Article  Google Scholar 

  34. Manning, C.E. and Ingebritsen, S.E., Permeability of the continental crust: Implications of geothermal data and metamorphic systems, Rev. Geophys., 1999, vol. 37, no. 1, pp. 127–150.

    Article  Google Scholar 

  35. Mavko, G. and Nur, A., The effect of a percolation threshold in the Kozeny–Carman relation, Geophysics, 1997, vol. 62, no. 5, pp. 1480–1482.

    Article  Google Scholar 

  36. Mavko, G., Mukerji, T., and Dvorkin, J., The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media, 2nd ed., Cambridge: Cambridge Univ. Press, 2009.

    Book  Google Scholar 

  37. Menéndez, B., Zhu, W., and Wong, T.-F., Micromechanics of brittle faulting and cataclastic flow in Berea sandstone, J. Struct. Geol., 1996, vol. 18, no. 1, pp. 1–16.

    Article  Google Scholar 

  38. Meredith, R.E. and Tobias, C.W., Conduction in heterogeneous systems, in Advances in Electrochemistry and Electrochemical Engineering, vol. 2, Tobias, C.W., Ed., New York: Interscience Publishers, 1962, pp. 15–47.

    Google Scholar 

  39. Nelder, J.A. and Mead, R., A simplex method for function minimization, Computer J., 1965, vol. 7, no. 4, pp. 308–313.

    Article  Google Scholar 

  40. Neuzil, C.E., Groundwater flow in low-permeability environments, Water Resour. Res., 1986, vol. 22, no. 8, pp. 1163–1195.

    Article  Google Scholar 

  41. Nur, A., Effects of stress on velocity anisotropy in rocks with cracks, J. Geophys. Res., 1971, vol. 76, no. 8, pp. 2022–2034.

    Article  Google Scholar 

  42. Paterson, M.S. and Wong, T.-F., Experimental Rock Deformation: The Brittle Field, New York: Springer, 2005.

    Google Scholar 

  43. Pisani, L., Simple Expression for the Tortuosity of Porous Media, Transp. Porous Media, 2011, vol. 88, no. 2, pp. 193–203.

    Article  Google Scholar 

  44. Potyondy, D.O., and Cundall, P.A., A bonded-particle model for rock, Int. J. Rock Mech. Min. Sci., 2004, vol. 41, no, 8, pp. 1329–1364.

    Article  Google Scholar 

  45. Shahraini, A., Ali, A., and Jakobsen, M., Characterization of fractured reservoirs using a consistent stiffness-permeability model: focus on the effects of fracture aperture, Geophys. Prospect., 2010, vol. 59, no. 3, pp. 492–505.

    Article  Google Scholar 

  46. Sharma, P. and Ganti, S., Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies, J. Appl. Mech., 2004, vol. 71, no. 5, pp. 663–671.

    Article  Google Scholar 

  47. Shermergor, T.D., Teoriya uprugosti mikroneodnorodnykh sred (Theory of Elasticity of Microinhomogeneous Media), Moscow: Nauka, 1977.

  48. Stober, I., Researchers study conductivity of crystalline rock in proposed radioactive waste site, Eos Trans. AGU, 1996, vol. 77, no. 10, pp. 93–94.

    Article  Google Scholar 

  49. Tikhotsky, S.A., Fokin, I.V., Bayuk, I.O., Beloborodov, D.E., Berezina, I.A., Gafurova, D.R., Dubinya, N.V., Krasnova, M.A., Korost, D.V., Makarova, A.A., Patonin, A.V., Ponomarev, A.V., Khamidullin, R.A., and Tselmovich, V.A., Comprehensive laboratory core analysis at CPGR IPE RAS, Seism. Instrum., 2018, vol. 54, no. 5, pp. 586–597.

    Article  Google Scholar 

  50. Walsh, J.B., The effect of cracks in rocks on Poisson’s ratio, J. Geophys. Res., 1965a. vol. 70, no. 20, pp. 5249–5257.

    Article  Google Scholar 

  51. Walsh, J.B., The effect of cracks on the compressibility of rock, J. Geophys. Res., 1965b. vol. 70, no. 2, pp. 381–389.

    Article  Google Scholar 

  52. Willis, J.R., Variational and Related Methods for the Overall Properties of Composites, Adv. Appl. Mech., 1981, vol. 21, pp. 1–78.

    Article  Google Scholar 

  53. Wong, T.-F., Mechanical compaction and the brittle-ductile transition in porous sandstones, Geol. Soc., London, Spec. Publ., 1990, vol. 54, no. 1, pp. 111–122.

    Article  Google Scholar 

  54. Yalaev, T.R., Bayuk, I.O., and Popov, E.Y., Fluid Substitution Problem for Thermal Conductivity of Hydrocarbon Reservoirs Based on Rock Physics Methods, 7th EAGE St. Petersburg Inter. Conference and Exhibition, 2016a, pp. 878–882.

  55. Yalaev, T.R., Bayuk, I.O., Tarelko, N.F., and Abashkin, V.V., Connection of Elastic and Thermal Properties of Bentheimer Sandstone Using Effective Medium Theory (Rock Physics), 50th US Rock Mechanics/Geomechanics Symposium, 2016b, Houston, vol. 1, pp. 237–243.

  56. Yalaev, T.R., Bayuk, I.O., Tarelko, N.F., and Abashkin, V.V., Connection between thermal and elastic properties of bentheimer sandstone, Seism. Technol., 2016c, no. 2, pp. 76–82.

  57. Zhang, J., Wong, T.-F., and Davis, D.M., Micromechanics of pressure-induced grain crushing in porous rocks, J. Geophys. Res.: Solid Earth, 1990, vol. 95, no. B1, pp. 341–352.

    Article  Google Scholar 

  58. Zhang, X. and Sharma, P., Inclusions and inhomogeneities in strain gradient elasticity with couple stresses and related problems, Int. J. Solids Struct., 2005a. vol. 42, no. 13, pp. 3833–3851.

    Article  Google Scholar 

  59. Zhang, X. and Spiers, C.J., Compaction of granular calcite by pressure solution at room temperature and effects of pore fluid chemistry, Int. J. Rock Mech. Min. Sci., 2005b, vol. 42, no. 7, pp. 950–960.

    Article  Google Scholar 

  60. Zhang, X., Spiers, C.J., and Peach, C.J., Compaction creep of wet granular calcite by pressure solution at 28 to 150°C, J. Geophys. Res.: Solid Earth, 2010, vol. 115, Paper ID B09217.

  61. Zhao, H., Xiao, Q., Huang, D., and Zhang, S., Influence of Pore Structure on Compressive Strength of Cement Mortar, Sci. World J., 2014, p. 247058.

  62. Zhukov, V.S. and Motorygin, V.V., Examining few methods for estimation of cracking porosity, Vesti Gaz. Nauki, 2017a, no. 3, pp. 207–215.

  63. Zhukov, V.S. and Motorygin, V.V., Influence of various kinds of porosity on velocity of elastic waves and electrical conductivity of Chayanda field reservoir rocks, Vesti Gaz. Nauki, 2017b, no. 2, pp. 223–233.

  64. Zhukov, V.S. and Motorygin, V.V., Influence of intergrain and cracking porosity of rocks on P-wave velocity, Vesti Gaz. Nauki, 2018, no. 3, pp. 249–255.

  65. Zimmerman, R.W., Somerton, W.H., and King, M.S., Compressibility of porous rocks, J. Geophys. Res.: Solid Earth, 1986, vol. 91, no B12, pp. 12765–12777.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to M.A. Krasnova and D.E. Beloborodov for conducting experimental work on ultrasound tomography of samples, as well as to A.V. Patonin, N.M. Shikhova, and I.V. Fokin for obtaining the results of geomechanical tests.

Funding

The laboratory studies of samples were supported by the Russian Science Foundation (project no. 14-17-00658).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. F. Ghasemi or I. O. Bayuk.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, M.F., Bayuk, I.O. Bounds for Pore Space Parameters of Petroelastic Models of Carbonate Rocks. Izv., Phys. Solid Earth 56, 207–224 (2020). https://doi.org/10.1134/S1069351320020032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351320020032

Keywords:

Navigation