Skip to main content
Log in

The Experience of Magnetovariational Sounding in the Arctic: the Laptev Sea Region

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—We present the results of magnetovariational soundings at two sites (Tiksi Observatory and Kotelny Island in the Laptev Sea region of the Arctic) and their three-dimensional (3D) inversion using the ModEM program. In the models obtained by the inversion, the conductive heterogeneities are present in the regions of the both sites down to a depth of 200 km in the region of the observatory and 100 km beneath the Kotelny Island. The geoelectric heterogeneities in the model in the region of the observatory are most contrasting and voluminous, whereas beneath the island they are more localized. The correlation between the locations of these heterogeneities at both sites and the features of the geological and geophysical structure of the region is noted. It is shown that the applied algorithm of data processing eliminates the effect of the polar electrojet which provides the possibility to study the geoelectric structure of the region by magnetovariational method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Andiyeva, T.A., Tectonic position and basic structures of the Laptev Sea, Neftegazov. Geol. Teor. Prakt., 2008, vol. 3, no. 1, pp. 6–19.

    Google Scholar 

  2. Beka, T.I., Smirnov, M., Bergh, S.G., and Birkelund, Y., The first magnetotelluric image of the lithospheric-scale geological architecture in central Svalbard, Arctic Norway, Polar Res., 2015, vol. 34, no. 1, p. 26766. https://doi.org/10.3402/polar.v34.26766

    Article  Google Scholar 

  3. Berdichevsky, M.N. and Dmitriev, V.I., Models and Methods of Magnetotellurics, Berlin: Springer, 2008.

    Book  Google Scholar 

  4. DeLaurier, J.M., Law, L.K., Niblett, E.R., and Plet, F.C., Geomagnetic variations anomalies in the Canadian Arctic. II. Mould Bay Anomaly, J. Geomag. Geoelectr., 1974, vol. 26, pp. 223–245.

    Article  Google Scholar 

  5. Dmitriev, V. and Berdichevsky, M., The fundamental model of magnetotelluric sounding, Proc. IEEE, 1979, vol. 67, no. 7, pp. 1034–1044.

    Article  Google Scholar 

  6. Egbert, G.D. and Kelbert, A., Computational recipes for electromagnetics inverse problems, Geophys. J. Int., 2012, vol. 189, pp. 251–267. https://doi.org/10.1111/j.1365-246X.2011.05347.x

    Article  Google Scholar 

  7. Fonarev, G.A., Trofimov, I.L., and Shneer, V.S., Electromagnetic studies in the Central Arctic water basin, Geomagn. Aeron., 2009, vol. 49, no. 6, pp. 813–815.

    Article  Google Scholar 

  8. Gramberg, I.S., Demenitskaya, R.M., and Sekretov, S.B., The system of riftogenic grabens of the Laptev Sea shelf as a missing link in the rift belt of the Gakkel-Momsky ridge, Dokl. Akad. Nauk SSSR, 1990, vol. 311, no. 3, pp. 689–694.

    Google Scholar 

  9. Hermance, J.F., Electromagnetic induction in the Earth by a moving ionospheric current system, Geophys. J. R. Astron. Soc., 1978, vol. 55, pp. 557–576.

    Article  Google Scholar 

  10. Imaev, V.S., Imaeva, L.P., and Kozmin, B.M., Seysmotektonika Yakutii (Seismotectonics of Yakutia), Moscow: GEOS, 2000.

  11. Imaev, V.S., Imaeva, L.P., and Kozmin, B.M., The oceanic and continental rifts of the North-Eastern Asia (seismotectonic analysis), Litosfera, 2004, no. 4, pp. 44–61.

  12. Jakovlev, A.V., Bushenkova, N.A., Koulakov, I.Yu., and Dobretsov, N.L., Structure of the upper mantle in the Circum-Arctic region from regional seismic tomography, Rus. Geol. Geophys, 2012, vol. 53, no. 10, pp. 963–971.

    Article  Google Scholar 

  13. Kelbert, A., Meqbel, N.M., Egbert, G.D., and Tandon, K., ModEM: A modular system for inversion of electromagnetic geophysical data, Comp. Geosci., 2014, vol. 66, pp. 40–53. https://doi.org/10.1016/j.cageo.2014.01.010

    Article  Google Scholar 

  14. Koulakov, I.Yu., Gaina, C., Dobretsov, N.L., Vasilevskii, A.N., and Bushenkova, N.A., Plate reconstructions in the Arctic region based on joint analysis of gravity, magnetic, and seismic anomalies, Rus. Geol. Geophys., 2013, vol. 54, no. 8, pp. 859–873.

    Article  Google Scholar 

  15. Koz’min, B.M., Shibayev, S.V., Petrov, A.F., and Timirshin, K.V., Lena-Taimyr anomaly of seismically active medium on the shelf of the Laptev Sea, Sci. Educ., 2014, no. 2, pp. 105–110.

  16. Kuhn, C., Kuster, J., and Brasse, H., Three-dimensional inversion of magnetotelluric data from the Central Andean continental margin, Earth Planets Space, 2014, vol. 66, no. 112, pp. 1–13. http://www.earth-planets-space.com/ content/66/1/112.

    Article  Google Scholar 

  17. Lauritsen, N. L. B., Magnetotelluric investigation in West Greenland considering the polar electrojet, ocean and fjords, PhD Dissertation, Kgs. Lyngby: Technical University of Denmark, 2016. http://orbit.dtu.dk/en/publications/magnetotelluric-investigation-in-west-greenland–considering-the-polar-electrojet-ocean-and-fjords(bce42f9b-7357-43a2-8182-9937476c1db4).html.

    Google Scholar 

  18. Levitin, A.E., Gromova, L.I., Dremukhina, L.A., and Pal’shin, N.A., Analysis of high-latitude current systems during the BEAR experiment based on the IZMEM model, Geomagn. Aeron., 2007, vol. 47, no. 3, pp. 330–335.

    Article  Google Scholar 

  19. Murthy, D.N., Veeraswamy, K., Harinarayama, T., Singh, U.K., and Santosh, M., Electrical structure beneath Schirmacher Oasis, East Antarctica: a magnetotelluric study, Polar Res., 2013, vol. 32, no.1, pp. 1–15. https://doi.org/10.3402/polar.v32i0.17309

    Article  Google Scholar 

  20. Neizvestnov, Ya.V., Suprunenko, O.I., Borovik, O.V., Kolchina, N.L., Kurinnyi, N.A., and Frantceva, T.N., Cryogenic-geothermal problems in development of petroleum resources of the Russian Arctic, Probl. Arkt. Antarkt., 2009, vol. 82, no. 2, pp. 50–59.

    Google Scholar 

  21. Niblett, E.R., Delaurier, J.M., Law, L.K., and P-Jetj, F.C., Geomagnetic Variation Anomalies in the Canadian Arctic. I. Ellesmere Island and Lincoln Sea, J. Geomag. Geoelectr., 1974, vol. 26, pp. 203–221.

    Article  Google Scholar 

  22. Patro, P.K. and Egbert, G.D., Regional conductivity structure of Cascadia: Preliminary results from 3D inversion of USArray transportable array magnetotelluric data, Geophys. Res. Lett., 2008, vol. 35, Paper ID L20311. https://doi.org/10.1029/2008GL035326

  23. Patro, P.K. and Egbert, G.D., Application of 3D inversion to magnetotelluric profile data from the Deccan Volcanic Province of Western India, Phys. Earth Planet. Inter., 2011, vol. 187. pp. 33–46.

    Article  Google Scholar 

  24. Pedrera, A., Ruiz-Consstan, A., Heredia, N., Galindo-Zaldivar, J., Bohoyo, F., Marin-Lechado, C., Ruano, P., and Somoza, L., The fracture system and the melt emplacement beneath the Deception Island active volcano, South Shetland Islands, Antarctica, Antarct. Sci., 2012, vol. 24, no. 2, pp. 173–182. https://doi.org/10.1017/S0954102011000794

    Article  Google Scholar 

  25. Samrock, F., Kuvshinov, A., Bakker, J., Jacson, A., and Fisseha, S., 3-D analysis and interpretation of magnetotelluric data from the Aluto-Langano geothermal field, Ephiopia, Geophys. J. Int., 2015, vol. 202, no.3, pp. 1923–1948.

    Article  Google Scholar 

  26. Sandwell, D.T. and Smith, W.H.F., Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge Segmentation versus spreading rate, J. Geophys. Res., 2009, vol. 114, Paper ID B01411. http://topex.ucsd.edu/cgi-bin/get_data.cgi. https://doi.org/10.1029/2008JB006008

  27. Starzhinsky, S.S., Results of magnetic induction studies in the Primorski Region, Izv.,Phys. Solid Earth, 2004, vol. 40, no. 8, pp. 633–640.

    Google Scholar 

  28. Tietze, K. and Ritter, O., Three-dimensional magnetotelluric inversion in practice-the electrical conductivity structure of the San Andreas Fault in Central California, Geophys. J. Int., 2013, vol. 195, no. 1, pp. 130–197.

    Article  Google Scholar 

  29. Tietze, K., Ritter, O., and Egbert, G.D., 3-D inversion of the magnetotelluric phase tensor and vertical magnetic transfer function, Geophys. J. Int., 2015, vol. 203, no. 2, pp. 1128–1148.

    Article  Google Scholar 

  30. Trofimov, I.L., Magnetotelluric sounding in the Canadian Hollow, Geomagn. Aeron., 1979, vol. 19, no. 5, pp. 904–908.

    Google Scholar 

  31. Trofimov, I.L., and Fonarev, G.A., Some results of deep magnetotelluric surveys in the Arctic Ocean, Geomagn. Aeron., 1974, vol. 14, no. 4, pp. 89–92.

    Google Scholar 

  32. Varentsov, I.M. et al. (BEAR Collab.), System of electromagnetic field transfer operators for the BEAR array of simultaneous soundings: Methods and Results, Izv.,Phys. Solid Earth, 2003a, vol. 39, no. 2, pp. 118–148.

    Google Scholar 

  33. Varentsov, I.M. et al. (BEAR Collab.), Diagnostics and suppression of auroral distortions in the transfer operators of the electromagnetic field in the BEAR experiment, Izv.,Phys. Solid Earth, 2003b, vol. 39, no. 4, pp. 283–307.

    Google Scholar 

  34. Vasil’chuk, Yu.K. and Budantseva, N.A., Cryopegs, in Kriosfera neftegazokodensatnykh mestorozhdenii poluostrova Yamal, T. 1: Kriosfera Kharasaveiskogo gazokondensatnogo mestorozhdeniya (Cryosphere of Oil and Gas Condensate Fields of the Yamal Peninsula, vol. 1: The Cryosphere of the Kharasavei Gas Condensate Field), Tyumen–St.Petersburg: TyumenNIIgiprogaz–Nedra, 2006, pp. 230–235.

  35. Viljanen, A., Pirjola, R., and Amm, O., Magnetotelluric source effect due to 3D ionospheric current systems using the complex image method for 1D conductivity structures, Earth Planets Space, 1999, vol. 51, pp. 933–945.

    Article  Google Scholar 

  36. Volkomirskaya, L.B. and Fonarev, G.A., The experience of local magneto-variational sounding in the region of the Arctic Ocean, Geomagn. Aeron., 1978, vol. 18, no. 6, pp. 1128–1130.

    Google Scholar 

  37. Wannamaker, P.E., Stodt, J.A., Pellerin, L., Olsen, S.L. and Hall, D.B., Structure and thermal regime beneath the South Pole region, East Antarctica, from magnetotelluric measurements, Geophys. J. Int., 2004, vol. 157, pp. 36–54.

    Article  Google Scholar 

  38. Yumoto, K. and the 210 MM Magnetic Observation Collab., The STEP 210 magnetic meridian network project, J. Geomag. Geoelectr., 1996, vol. 48, pp. 1297–1310.

    Article  Google Scholar 

  39. Yumoto, K. and the CPMN Collab., Characteristics of Pi 2 magnetic pulsations observed at the CPMN stations: A review of the STEP results, Earth Planets Space, 2001, vol. 53, pp. 981–992.

    Article  Google Scholar 

  40. Yumoto, K. and the MAGDAS Collab., MAGDAS project and its application for space weather, in Solar Influence on the Heliosphere and Earth’s Environment: Recent Progress and Prospects, Gopalswamy, N. and Bhattacharyya, A., Eds., 2006, pp. 309–405.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Dr. G. Egbert for providing the possibility to use the ModEM program and to Dr. A. Kelbert for the consultations. We also thank all the creators of websites cited in the paper for providing access to the data.

Funding

The study was carried out under the project no. 18-1-004 of the “Far East” program of the Far Eastern Branch of the Russian Academy of Sciences Branch of the Russian Academy of Sciences and as part of state contract under the program for fundamental research of the Russian Academy of Sciences (item 70, research issue 3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Starzhinskii.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starzhinskii, S.S., Nikiforov, V.M. & Yoshikawa, A. The Experience of Magnetovariational Sounding in the Arctic: the Laptev Sea Region. Izv., Phys. Solid Earth 56, 225–237 (2020). https://doi.org/10.1134/S106935132002010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106935132002010X

Keywords:

Navigation