Skip to main content
Log in

On Kinematic Generation of the Magnetic Modes of Bloch Type

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Kinematic generation of electrically conductive fluid by space-periodic flow is considered. The generated magnetic modes have a form of a product of three-dimensional field having the same spatial periodicity and a Fourier harmonic whose wave vector q is an arbitrary constant. We present the examples of computation of the modes associated with the maximum (over q) growth rates for a generic flow velocity where the magnetic α-effect is present and for a parity-invariant flow lacking the α-effect and featuring negative magnetic eddy diffusivity. It is shown that magnetic modes associated with the maximum over q growth rates are characterized by weak separation of spatial scales, and, therefore, neither of the two noted effects can be regarded as the main mechanism responsible for their generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Andrievsky, A., Brandenburg, A., Noullez, A., and Zheligovsky, V., Negative magnetic eddy diffusivities from test-field method and multiscale stability theory, Astrophysical J., 2015, vol. 811, p.135. arxiv.org/abs/1501.04465

    Article  Google Scholar 

  2. Andrievsky, A., Chertovskih, R., and Zheligovsky, V., Negative magnetic eddy diffusivity due to oscillogenic \(\alpha \)-effect, Physica D., 2019a, vol. 399, pp. 58–72. arxiv.org/abs/1711.02390

  3. Andrievsky, A., Chertovskih, R., and Zheligovsky, V., Pointwise vanishing velocity helicity of a flow does not preclude magnetic field generation, Phys. Rev. E., 2019b, vol. 99, p. 033204. arxiv.org/abs/1811.00859

    Article  Google Scholar 

  4. Arnold, V.I., Zeldovich, Ya.B., Ruzmaikin, A.A., and Sokolov, D.D., Stationary magnetic field in a periodic flow, Dokl. Akad. Nauk SSSR, 1982, vol. 266, pp. 1357–1351.

    Google Scholar 

  5. Bloch, F., Über die quantenmechanik der elektronen in kristallgittern. zeitschrift für physik A, Hadrons and Nuclei, 1929, vol. 52, pp. 555–600.

    Google Scholar 

  6. Chertovskih, R. and Zheligovsky, V., Large-scale weakly nonlinear perturbations of convective magnetic dynamos in a rotating layer, Physica D., 2015, vol. 313, pp. 99–116. arxiv.org/abs/1504.06856

    Article  Google Scholar 

  7. Chertovskih, R., Gama, S.M.A., Podvigina, O., and Zheligovsky, V., Dependence of magnetic field generation by thermal convection on the rotation rate: a case study, Physica D., 2010, vol. 239, pp. 1188–1209. arxiv.org/abs/0908.1891

    Article  Google Scholar 

  8. Christopherson, D.G., A note on the vibration of membranes, Quart. J. Math., 1940, vol. 11, pp. 63–65.

    Article  Google Scholar 

  9. Gama, S.M.A., Chertovskih, R., and Zheligovsky, V., Computation of kinematic and magnetic \(\alpha \)-effect and eddy diffusivity tensors by Padé approximation, Fluids, 2019, vol. 4, p. 110.

    Article  Google Scholar 

  10. Gilbert, A.D., Frisch, U., and Pouquet, A., Helicity is unnecessary for alpha effect dynamos, but it helps, Geophys. Astrophys. Fluid Dynamics, 1988, vol. 42, pp. 151–161.

    Article  Google Scholar 

  11. Graham, J.P., Blackman, E.G., Mininni, P.D., and Pouquet, A., Not much helicity is needed to drive large-scale dynamos, Phys. Rev. E., 2012, vol. 85, p. 066406.

    Article  Google Scholar 

  12. Kato, T., Perturbation Theory for Linear Operators, Berlin: Springer, 1995, 2nd ed.

    Book  Google Scholar 

  13. Klapper, I. and Young, L.S., Rigorous bounds on the fast dynamo growth rate involving topological entropy, Communications Math. Phys., 1995, vol. 173, pp. 623–646.

    Article  Google Scholar 

  14. Krause, F. and Rädler, K.-H., Mean-Field Magnetohydrodynamics and Dynamo Theory, Berlin: Academic, 1980.

    Google Scholar 

  15. Lanotte, A., Noullez, A., Vergassola, M., and Wirth, A., Large-scale dynamo by negative magnetic eddy diffusivities, Geophys. Astrophys. Fluid Dyn., 1999, vol. 91, pp. 131–146.

    Article  Google Scholar 

  16. Moffatt, H.K., The degree of knottedness of tangled vortex lines, J. Fluid Mech., 1969, vol. 35, pp. 117–129.

    Article  Google Scholar 

  17. Moffatt, H.K., Turbulent dynamo action at low magnetic Reynolds number, J. Fluid Mech., 1970, vol. 41, pp. 435–452.

    Article  Google Scholar 

  18. Moffatt, H.K., The mean electromotive force generated by turbulence in the limit of perfect conductivity, J. Fluid Mech., 1974, vol. 65, pp. 1–10.

    Article  Google Scholar 

  19. Moffatt, H.K., Magnetic Field Generation in Electrically Conducting Fluids, Cambridge: Cambridge Univ., 1978.

    Google Scholar 

  20. Moffatt, H.K., Helicity and celestial magnetism, Proc. R. Soc. A., 2016, vol. 472, p. 20160183. Moffatt, H.K. and Ricca, R.L., Helicity and the Călugăreanu invariant, Proc. R. Soc. Lond. A., 1992, vol. 439, pp. 411–429.

    Article  Google Scholar 

  21. Moffatt, H.K., Helicity and singular structures in fluid dynamics, Proc. Natl. Ac. Sci. USA, 2014, vol. 111, no. 10, pp. 3663–3670.

    Article  Google Scholar 

  22. Moffatt, H.K. and Proctor, M.R.E., The role of the helicity spectrum function in turbulent dynamo theory, Geophys. Astrophys. Fluid Dynamics, 1982, vol. 21, pp. 265–283.

    Article  Google Scholar 

  23. Moreau, J.-J., Constantes d’un îlot tourbillonnaire en fluide parfait barotrope, C. R. Acad. Sci. Paris, 1961, vol. 252, pp. 2810–2813.

    Google Scholar 

  24. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical recipes in Fortran, in The Art of Scientific Computing, Cambridge: Cambridge Univ., 1997, 2nd ed.

    Google Scholar 

  25. Rädler, K.-H., Mean-field dynamo theory: early ideas and today’s problems, in Magnetohydrodynamics. Historical Evolution and Trends. Fluid Mechanics and Its Applications, Molokov, S., Moreau, R., Moffatt, K., Eds., vol. 80, Dordrecht: Springer, 2007, pp. 55–72.

    Google Scholar 

  26. Rädler, K.-H. and Brandenburg, A., \(\alpha \)-Effect dynamos with zero kinetic helicity, Phys. Rev. E., 2008, vol. 77, p. 026405.

    Google Scholar 

  27. Rasskazov, A., Chertovskih, R., and Zheligovsky, V., Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of incompressible electrically conducting fluid, Phys. Rev. E., 2018, vol. 97, p. 043201. arxiv.org/abs/1708.08770.

    Article  Google Scholar 

  28. Roberts, G.O., Spatially periodic dynamos, Phil. Trans. R. Soc. Lond., 1970, vol. A266, pp. 535–558.

    Google Scholar 

  29. Roberts, G.O., Dynamo action of fluid motions with two-dimensional periodicity, Phil. Trans. R. Soc. Lond., vol. A271, 1972, pp. 411–454.

    Google Scholar 

  30. Ruzmaikin, A.A., Sokoloff, D.D., Soloviev, A.A., and Shukurov, A.M., The Couette–Poiseuille flow as a helical dynamo, Magnetohydrodynamics, 1989, no. 1, pp. 9–14.

  31. Soloviev, A.A., Excitation of magnetic field by the motion of a conducting fluid at large magnetic Reynolds number, Izv. Akad. Nauk SSSR,Fiz. Zemli, 1987a, no. 5, pp. 77–80.

  32. Soloviev, A.A., Vozbuzhdeniye magnitnogo polya spiral’nym techeniyem provodyashchey zhidkosti (Excitation of Magnetic Field by a Spiral Flow of a Conducting Fluid), Moscow: IFZ AN SSSR, 1987b.

  33. Soloviev, A.A., Excitation of magnetic field by axisymmetric motion of a conducting fluid, Izv. Akad. Nauk SSSR,Fiz. Zemli,1985a, no. 4, pp. 101–103.

  34. Soloviev, A.A., Description of the range of parameter values of the spiral Couette–Poiseuille flow of a conducting fluid at which excitation of magnetic field is possible, Izv. Akad. Nauk SSSR,Fiz. Zemli, 1985b, no. 12, pp. 40–47.

  35. Starchenko, S. V., Energy geodynamo parameters compatible with analytical, numerical, paleomagnetic models and observations, Izv.,Phys. Solid Earth, 2017, vol. 53, no. 6, pp. 908–922.

    Article  Google Scholar 

  36. Steenbeck, M., Krause, F., and Rädler, K.-H., A calculation of the mean electromotive force in an electrically conducting fluid in turbulent motion, under the influence of Coriolis forces, in The turbulent dynamo: A translation of a series of papers by F. Krause, K.-H. Rädler, and M. Steenbeck, Roberts P.H. and Stix, M., Tech. Note NCAR-TN/IA-60, Boulder, 1971, P. 29–47. http://nldr.library.ucar.edu/repository/assets/ technotes/TECH-NOTE-000-000-000-045.pdf

  37. Vishik, M.M., Periodic dynamo I, in Matematicheskiye metody v seysmologii i geodinamike, Vychislitel’naya seismologiya, vyp. 19 (Mathematical Methods in Seismology and Geodynamics, vol. 19 of Computational Seismology), Keilis-Borok, V.I. and Levshin, A.L., Eds., Moscow: Nauka, 1986, pp. 186–215.

  38. Vishik, M.M., Periodic Dynamo, II, in Chislennoye modelirovaniye i analiz geofizicheskikh protsessov, vyp. 20, Vychislitel’naya seismologiya (Numerical Modeling and Analysis of Geophysical Processes, vol. 20 of Computational Seismology), Keilis-Borok, V.I. and Levshin, A.L., Ed., Moscow: Nauka, 1987, pp. 12–22.

  39. Vishik, M.M., Excitation of magnetic field by a three-dimensional steady flow of a conducting fluid at high magnetic Reynolds numbers, Izv. Akad. Nauk SSSR,Fiz. Zemli, 1988, no. 3, pp. 3–12.

  40. Zheligovsky, V., Numerical solution of the kinematic dynamo problem for Beltrami flows in a sphere, J. Sci. Comp., 1993, vol. 8, pp. 41–68.

    Article  Google Scholar 

  41. Zheligovsky, V.A. and Galloway, D.J., Dynamo action in Christopherson hexagonal flow, Geophys. Astrophys. Fluid Dynamics, 1998, vol. 88, pp. 277–293.

    Article  Google Scholar 

  42. Zheligovsky, V.A., Podvigina, O.M., and Frisch, U., Dynamo effect in parity-invariant flow with large and moderate separation of scales, Geophys. Astrophys. Fluid Dynamics, 2001, vol. 95, pp. 227–268. arxiv.org/abs/nlin/0012005

    Article  Google Scholar 

  43. Zheligovsky, V.A., Matematicheskaya teoriya ustoychivosti magnitogidrodinamicheskikh rezhimov k dlinnomasshtabnym vozmushcheniyam (Mathematical Theory of Stability of Magnetohydrodynamic Regimes to Large-Scale Perturbations), Moscow: Krasand. URSS, 2010.

  44. Zheligovsky, V.A., Large-scale perturbations of magnetohydrodynamic regimes: linear and weakly nonlinear stability theory, in Lecture Notes in Physics, vol. 829, Heidelberg: Springer, 2011, p. 330.

Download references

ACKNOWLEDGMENTS

V. Zheligovsky is grateful to CMUP for their hospitality during his visit to Porto in January to April 2019. The authors are grateful to the reviewers for their valuable comments.

Funding

The work was partly carried out at the University of Porto with the support from CMUP (Centro de Matemática da Universidade do Porto, UID/MAT/00144/2019) and SYSTEC (Centro de Investigação em Sistemas e Tecnologias, POCI-01-0145-FEDER-006933/SYSTEC) funded by the FCT (Fundação para a Ciência ea Tecnologia, Portugal) together with the National (MCTES) and European Foundations under the FEDER program (Fundo Europeu de Desenvolvimento Regional/European Regional Development Fund) COMPETE 2020 (the PT2020 partnership agreement) as well as under the STRIDE projects (NORTE-01-0145-FEDER-000033) funded by FEDER (NORTE 2020) and MAGIC (POCI-01-0145-FEDER-032485) funded by FEDER through COMPETE 2020–POCI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Zheligovsky or R. A. Chertovskih.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheligovsky, V.A., Chertovskih, R.A. On Kinematic Generation of the Magnetic Modes of Bloch Type. Izv., Phys. Solid Earth 56, 103–116 (2020). https://doi.org/10.1134/S1069351320010152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351320010152

Keywords:

Navigation