Skip to main content
Log in

A transference principle for nonlocal operators using a convolutional approach: fractional monotonicity and convexity

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We utilize a new definition for the fractional delta operator and prove that it is equivalent by translation to the more commonly used operator. By means of the convolution operation we demonstrate that this new operator is strongly connected to the positivity, monotonicity, and convexity of the functions on which it operates. We also analyze the case of compositions of discrete fractional operators. Finally, since the operator we study here is translationally related to the more commonly used discrete fractional operators, we are able to establish many new results for all types of discrete fractional differences, and we explicitly demonstrate that our results improve all known existing results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Abadias, A Katznelson-Tzafriri type theorem for Cesáro bounded operators, Studia Mathematica 234 (2016), 59–82.

    MathSciNet  MATH  Google Scholar 

  2. L. Abadias and C. Lizama, Almost automorphic mild solutions to fractional partial difference-differential equations, Applicable Analysis 95 (2016), 1347–1369.

    MathSciNet  MATH  Google Scholar 

  3. L. Abadias and P. J. Miana, Generalized Cesáro operators, fractional finite differences and Gamma functions, Journal of Functional Analysis 274 (2018), 1424–1465.

    MathSciNet  MATH  Google Scholar 

  4. L. Abadias, C. Lizama, P. J. Miana and M. P. Velasco, Cesáro sums and algebra homo-morphisms of bounded operators, Israel Journal of Mathematics 216 (2016), 471–505.

    MathSciNet  MATH  Google Scholar 

  5. T. Abdeljawad, Dual identities in fractional difference calculus within Riemann, Advances in Difference Equations (2013), Article no. 36.

    MATH  Google Scholar 

  6. T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dynamics in Nature and Society (2013), Article no. 406910.

    Google Scholar 

  7. R. Agarwal, C. Cuevas and C. Lizama, Regularity of Difference Equations on Banach Spaces, Springer, Cham, 2014.

    MATH  Google Scholar 

  8. E. Alvarez and C. Lizama, Weighted pseudo almost automorphic and ω-asymptotically ω-periodic solutions to fractional difference-differential equations, Electronic Journal of Differential Equations (2016), Article no. 270.

    MATH  Google Scholar 

  9. G. A. Anastassiou, Nabla discrete fractional calculus and nabla inequalities, Mathematical and Computer Modeling 51 (2010), 562–571.

    MathSciNet  MATH  Google Scholar 

  10. F. M. Atici and N. Acar, Exponential functions of discrete fractional calculus, Applicable Analysis and Discrete Mathematics 7 (2013), 343–353.

    MathSciNet  MATH  Google Scholar 

  11. F. M. Atici and P. W. Eloe, A transform method in discrete fractional calculus, International Journal of Difference Equations 2 (2007), 165–176.

    MathSciNet  Google Scholar 

  12. F. M. Atici and P. W. Eloe, Discrete fractional calculus with the nabla operator, Electronic Journal of Qualitative Theory of Differential Equations (2009), Article no. 3.

    Google Scholar 

  13. F. M. Atici and P. W. Eloe, Two-point boundary value problems for finite fractional difference equations, Journal of Difference Equations and Applications 17 (2011), 445–456.

    MathSciNet  MATH  Google Scholar 

  14. F. M. Atici and M. Uyanik, Analysis of discrete fractional operators, Applicable Analysis and Discrete Mathematics 9 (2015), 139–149.

    MathSciNet  MATH  Google Scholar 

  15. F. M. Atici and H. Yaldiz, Convex functions on discrete time domains, Canadian Mathematical Bulletin 59 (2016), 225–233.

    MathSciNet  MATH  Google Scholar 

  16. J. Baoguo, L. Erbe, C. S. Goodrich and A. Peterson, On the relation between delta and nabla fractional difference, Filomat 31 (2017), 1741–1753.

    MathSciNet  Google Scholar 

  17. J. Baoguo, L. Erbe, C. S. Goodrich and A. Peterson, Monotonicity results for delta fractional difference revisited, Mathematica Slovaca 67 (2017), 895–906.

    MathSciNet  MATH  Google Scholar 

  18. N. R. O. Bastos, D. Mozyrska and D. F. M. Torres, Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform, International Journal of Mathematics and Computation 11 (2011), 1–9.

    MathSciNet  Google Scholar 

  19. R. Dahal and C. S. Goodrich, A monotonicity result for discrete fractional difference operators, Archiv der Mathematik 102 (2014), 293–299.

    MathSciNet  MATH  Google Scholar 

  20. R. Dahal and C. S. Goodrich, Erratum to “R. Dahal, C. S. Goodrich, A monotonicity result for discrete fractional difference operators, Arch. Math. (Basel) 102 (2014), 293-299”, Archiv der Mathematik 104 (2015), 599–600.

    MathSciNet  Google Scholar 

  21. R. Dahal and C. S. Goodrich, An almost sharp monotonicity result for discrete sequential fractional delta differences, Journal of Difference Equations and Applications 23 (2017), 1190–1203.

    MathSciNet  MATH  Google Scholar 

  22. L. Erbe, C. S. Goodrich, B. Jia and A. Peterson, Survey of the qualitative properties of fractional difference operators: monotonicity convexity and asymptotic behavior of solutions, Advances in Difference Equations (2016), Article no. 43.

    MATH  Google Scholar 

  23. R. A. C. Ferreira, A discrete fractional Gronwall inequality, Proceedings of the American Mathematical Society 140 (2012), 1605–1612.

    MathSciNet  MATH  Google Scholar 

  24. R. A. C. Ferreira, Existence and uniqueness of solution to some discrete fractional boundary value problems of order less than one, Journal of Difference Equations and Applications 19 (2013), 712–718.

    MathSciNet  MATH  Google Scholar 

  25. C. S. Goodrich, On discrete sequential fractional boundary value problems, Journal of Mathematical Analysis and Applications 385 (2012), 111–124.

    MathSciNet  MATH  Google Scholar 

  26. C. S. Goodrich, A convexity result for fractional differences, Applied Mathematics Letters 35 (2014), 58–62.

    MathSciNet  MATH  Google Scholar 

  27. C. S. Goodrich, Systems of discrete fractional boundary value problems with nonlinear-ities satisfying no growth conditions, Journal of Difference Equations and Applications 21 (2015), 437–453.

    MathSciNet  MATH  Google Scholar 

  28. C. S. Goodrich, A note on convexity, concavity and growth conditions in discrete fractional calculus with delta difference, Mathematical Inequalities & Applications 19 (2016), 769–779.

    MathSciNet  MATH  Google Scholar 

  29. C. S. Goodrich, The relationship between discrete sequential fractional delta differences and convexity, Applicable Analysis and Discrete Mathematics 10 (2016), 345–365.

    MathSciNet  MATH  Google Scholar 

  30. C. S. Goodrich, A sharp convexity result for sequential fractional delta differences, Journal of Difference Equations and Applications 23 (2017), 1986–2003.

    MathSciNet  MATH  Google Scholar 

  31. C. S. Goodrich, Monotonicity and non-monotonicity results for sequential fractional delta differences of mixed order, Positivity 22 (2018), 551–573.

    MathSciNet  MATH  Google Scholar 

  32. C. S. Goodrich, A uniformly sharp monotonicity result for discrete fractional sequential differences, Archiv der Mathematik 110 (2018), 145–154.

    MathSciNet  MATH  Google Scholar 

  33. C. S. Goodrich and A. C. Peterson, Discrete Fractional Calculus, Springer, Cham, 2015.

    MATH  Google Scholar 

  34. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Elsevier/Academic Press, Amsterdam, 2007.

    MATH  Google Scholar 

  35. H. L. Gray and N. F. Zhang, On a new definition of the fractional difference, Mathematics of Computation 50 (1988), 513–529.

    MathSciNet  MATH  Google Scholar 

  36. J. W. He, C. Lizama and Y. Zhou, The Cauchy problem for discrete-time fractional evolution equations, Journal of Computational and Applied Mathematics 370 (2020), Article no. 112683.

  37. M. Holm, Sum and difference compositions and applications in discrete fractional calculus, Cubo 13 (2011), 153–184.

    MathSciNet  MATH  Google Scholar 

  38. B. Jia, L. Erbe and A. Peterson, Two monotonicity results for nabla and delta fractional differences, Archic der Mathematik 104 (2015), 589–597.

    MathSciNet  MATH  Google Scholar 

  39. B. Jia, L. Erbe and A. Peterson, Convexity for nabla and delta fractional differences, Journal of Difference Equations and Applications 21 (2015), 360–373.

    MathSciNet  MATH  Google Scholar 

  40. B. Jin, B. Li and Z. Zhou, Discrete maximal regularity of time-stepping schemes for fractional evolution equations, Numerische Mathematik 138 (2018), 101–131.

    MathSciNet  MATH  Google Scholar 

  41. C. Leal, C. Lizama and M. Murillo-Arcila, Lebesgue regularity for nonlocal time-discrete equations with delays, Fractional Calculus and Applied Analysis 21 (2018), 696–715.

    MathSciNet  MATH  Google Scholar 

  42. C. Leal, C. Lizama and M. Murillo-Arcila, Lebesgue regularity for differential difference equations with fractional damping, Mathematical Methods in the Applied Sciences 41 (2018), 2535–2545.

    MathSciNet  MATH  Google Scholar 

  43. C. Lizama, ℓp-maximal regularity for fractional difference equations on UMD spaces, Mathematische Nachrichten 288 (2015), 2079–2092.

    MathSciNet  MATH  Google Scholar 

  44. C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proceedings of the American Mathematical Society 145 (2017), 3809–3827.

    MathSciNet  MATH  Google Scholar 

  45. C. Lizama and M. Murillo-Arcila, ℓp-maximal regularity for a class of fractional difference equations on UMD spaces: the case 1 < α < 2, Banach Journal of Mathematical Analysis 11 (2017), 188–206.

    MathSciNet  MATH  Google Scholar 

  46. C. Lizama and M. Murillo-Arcila, Maximal regularity inpspaces for discrete time fractional shifted equations, Journal of Differential Equations 263 (2017), 3175–3196.

    MathSciNet  MATH  Google Scholar 

  47. C. Lizama and M. Murillo-Arcila, Well posedness for semidiscrete abstract fractional Cauchy problems with finite delay, Journal of Computational and Applied Mathematics 339 (2018), 356–366.

    MathSciNet  MATH  Google Scholar 

  48. C. Lizama and M. P. Velasco, Weighted bounded solutions for a class of nonlinear fractional equations, Fractional Calculus and Applied Analysis 19 (2016), 1010–1030.

    MathSciNet  MATH  Google Scholar 

  49. Z. Lv, Y. Gong and Y. Chen, Multiplicity and uniqueness for a class of discrete fractional boundary value problems, Applications of Mathematics 59 (2014), 673–695.

    MathSciNet  MATH  Google Scholar 

  50. T. Sitthiwirattham, Existence and uniqueness of solutions of sequential nonlinear fractional difference equations with three-point fractional sum boundary conditions, Mathematical Methods in the Applied Sciences 38 (2015), 2809–2815.

    MathSciNet  MATH  Google Scholar 

  51. T. Sitthiwirattham, J. Tariboon and S. K. Ntouyas, Boundary value problems for fractional difference equations with three-point fractional sum boundary conditions, Advances in Difference Equations (2013), Article no. 296.

    MATH  Google Scholar 

  52. R. Xu and Y. Zhang, Generalized Gronwall fractional summation inequalities and their applications, Journal of Inequalities and Applications (2015), Article no. 242.

    Google Scholar 

  53. A. Zygmund, Trigonometric Series, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Lizama.

Additional information

C. Lizama is partially supported by Fondecyt Grant number 1180041.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodrich, C., Lizama, C. A transference principle for nonlocal operators using a convolutional approach: fractional monotonicity and convexity. Isr. J. Math. 236, 533–589 (2020). https://doi.org/10.1007/s11856-020-1991-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-1991-2

Navigation