Skip to main content
Log in

On the question “Can one hear the shape of a group?” and a Hulanicki type theorem for graphs

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the question of whether or not it is possible to determine a finitely generated group G up to some notion of equivalence from the spectrum sp(G) of G. We show that the answer is “No” in a strong sense. As a first example we present the collection of amenable 4-generated groups Gω, ω ∈ {0, 1, 2}, constructed by the second author in 1984. We show that among them there is a continuum of pairwise non-quasi-isometric groups with \({\rm{sp}}(G_\omega)=[-\frac{1}{2},0]\cup[\frac{1}{2},1]\). Moreover, for each of these groups Gω there is a continuum of covering groups G with the same spectrum. As a second example we construct a continuum of 2-generated torsion-free step-3 solvable groups with the spectrum [-1, 1]. In addition, in relation to the above results, we prove a version of the Hulanicki Theorem about inclusion of spectra for covering graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Abdollahi, S. Janbaz and M. Ghahramani, A large family of cospectral Cayley graphs over dihedral groups, Discrete Mathematics 340 (2017), 1116–1121.

    Article  MathSciNet  Google Scholar 

  2. L. Babai, Spectra of Cayley graphs, Journal of Combinatorial Theory. Series B 27 (1979), 180–189.

    Article  MathSciNet  Google Scholar 

  3. L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, Trudy Matematicheskogo Instituta Imeni V. A. Steklova 231 (2000), 5–45.

    MathSciNet  MATH  Google Scholar 

  4. B. Bekka, P. de la Harpe and A. Valette, Kazhdan Property (T), New Mathematical Monographs, Vol. 11, Cambridge University Press, Cambridge, 2008.

  5. M. G. Benli, R. Grigorchuk and P. de la Harpe, Amenable groups without finitely presented amenable covers, Bulletin of Mathematical Sciences 3 (2013), 73–131.

    Article  MathSciNet  Google Scholar 

  6. M. Bozejko, K. Dykema and F. Lehner, Isomorphisms of Cayley graphs of surface groups, Algebra and Discrete Mathematics 1 (2006), 18–37.

    MathSciNet  MATH  Google Scholar 

  7. T. Ceccherini-Silberstein, R. Grigorchuk and P. de la Harpe, Amenability and paradoxical decompositions for pseudogroups and discrete metric spaces, Trudy Matematicheskogo Instituta Imeni V. A. Steklova 224 (1999), 68–11.

    MathSciNet  MATH  Google Scholar 

  8. P. de la Harpe, A. G. Robertson and A. Valette, On the spectrum of the sum of generators for a finitely generated group, Israel Journal of Mathematics 81 (1993), 65–96.

    Article  MathSciNet  Google Scholar 

  9. P. de la Harpe, A. G. Robertson and A. Valette, On the spectrum of the sum of generators for a finitely generated group. II, Colloquium Mathematicum 65 (1993), 87–102.

    MathSciNet  MATH  Google Scholar 

  10. J. Dixmier, Les C*-algèbres et leurs représentations, Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, Paris, 1996.

    MATH  Google Scholar 

  11. A. Dudko and R. Grigorchuk, On spectra of Koopman, groupoid and quasi-regular representations, Journal of Modern Dynamics 11 (2017), 99–123.

    Article  MathSciNet  Google Scholar 

  12. K. Fujiwara, Can one hear the shape of a group?, in Geometry and Topology of Manifolds, Springer Proceedings in Mathematics & Statistics, Vol. 154, Springer, Tokyo, 2016, pp. 139–146.

    Article  MathSciNet  Google Scholar 

  13. C. Gordon, D. Webb and S. Wolpert, Isospectral plane domains and surfaces via Riemannian orbifolds, Inventiones Mathematicae 110 (1992), 1–22.

    Article  MathSciNet  Google Scholar 

  14. R. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 48 (1984), 939–985.

    MathSciNet  Google Scholar 

  15. R. Grigorchuk, A. Pérez and T. Smirnova-Nagnibeda, Spectrum of Schreier graphs of spinal groups, preprint.

  16. P. Hall, Finiteness conditions for soluble groups, Proceedings of the London Mathematical Society 4 (1954), 419–436.

    MathSciNet  MATH  Google Scholar 

  17. N. Higson and G. Kasparov, Operator K-theory for groups which act properly and isometrically on Hilbert space, Electronic Research Announcements of the American Mathematical Society 3 (1997), 131–142.

    Article  MathSciNet  Google Scholar 

  18. A. Hulanicki, Groups whose regular representation weakly contains all unitary representations, Studia Mathematica 24 (1964), 37–59.

    Article  MathSciNet  Google Scholar 

  19. A. Hulanicki, Means and Følner condition on locally compact groups, Studia Mathematica 27 (1966), 87–104.

    Article  MathSciNet  Google Scholar 

  20. M. Kac, Can one hear the shape of a drum?, American Mathematical Monthly 73 (1966), 1–23.

    Article  MathSciNet  Google Scholar 

  21. H. Kesten, Full Banach mean values on countable groups, Mathematica Scandinavica 7 (1959), 146–156.

    Article  MathSciNet  Google Scholar 

  22. H. Kesten, Symmetric random walks on groups, Transactions of the American Mathematical Society 92 (1959), 336–354.

    Article  MathSciNet  Google Scholar 

  23. M. G. Kuhn, Anisotropic random walks on free products of cyclic groups, irreducible representations and idempotents of C*reg(G), Nagoya Mathematical Journal 128 (1992), 95–120.

    Article  MathSciNet  Google Scholar 

  24. A. Lubotzky, B. Samuels and U. Vishne, Isospectral Cayley graphs of some finite simple groups, Duke Mathematical Journal 135 (2006), 381–393.

    Article  MathSciNet  Google Scholar 

  25. I. Lysionok, A system of defining relations for the Grigorchuk group, Matematicheskie Zametki 38 (1985), 503–511.

    MathSciNet  Google Scholar 

  26. W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Interscience John Wiley & Sons, New York-London-Sydney, 1966.

    MATH  Google Scholar 

  27. Y. Muntyan, Automata groups, Ph.D. thesis, Texas A&M University, May 2009.

    Google Scholar 

  28. H. Neumann, Varieties of Groups, Springer, Berlin, 1967.

    Book  Google Scholar 

  29. A. Ol’ˇsanski˘ı, On characteristic subgroups of free groups, Uspekhi Matematicheskikh Nauk 29 (1974), 197–180.

    MathSciNet  Google Scholar 

  30. A. Valette, Can one hear the shape of a group?, Rendiconti del Seminario Matematico e Fisico di Milano 64 (1994), 31–44.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referee for careful reading of our paper and numerous useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem Dudko.

Additional information

Artem Dudko acknowledges the support by the National Science Centre, Poland, grant 2016/23/P/ST1/04088 under POLONEZ programme which has received funding from the EU Horizon 2020 research and innovation programme under the MSCA grant agreement No. 665778.

Rostilav Grigorchuk was partially supported by NSF grant DMS-1207699 and by Simons Foundation Collaboration Grant for Mathematicians, Award Number 527814

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudko, A., Grigorchuk, R. On the question “Can one hear the shape of a group?” and a Hulanicki type theorem for graphs. Isr. J. Math. 237, 53–74 (2020). https://doi.org/10.1007/s11856-020-1994-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-1994-z

Navigation