Skip to main content
Log in

Laser Optoacoustic Method for Measurement of Light Extinction Coefficient and Investigation of Its Spatial Distribution in Colloidal Media

  • ICPPP 20
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In the present work, the method which allows investigating the spatial distribution of light extinction coefficient in colloidal media is experimentally realized. The proposed method is based on the dependence of temporal profiles of excited OA-signals on the absorption and extinction coefficients of the studied medium. Water-based and kerosene-based magnetic fluids with volume content of magnetite particles in the range 0.35–3.5 % were studied as an example of the medium with spatially non-uniform optical properties. The capability of the reconstruction of the one-dimensional spatial distribution for the light extinction coefficient in the investigated media is demonstrated. It was shown that the relative change of the extinction coefficient with depth depends on volume concentration of magnetite particles, type of acoustical boundary and properties of carrier liquids. In the case of acoustical rigid boundary of magnetic fluid, an additional induced anisotropy occurs, which leads to increasing of the light extinction coefficient with depth in comparison with acoustical free boundary of fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Chikazumi, S. Taketomi, M. Ukita, M. Mizukami, H. Miyajima, M. Setogawa, J.J. Kurinara, Mag. Mag. Mater. 65, 245 (1987)

    Article  ADS  Google Scholar 

  2. I. Anton, I. De Sabata, L.J. Verkas, Mag. Mag. Mater. 85, 219 (1990)

    Article  ADS  Google Scholar 

  3. S. Baglio, P. Barrera, N. Savalli, V. Sacco, Device applications of nonlinear dynamics, in Understanding Complex Systems, ed. by S. Baglio, A. Bulsara (Springer, Berlin, 2006), p. 129

    Google Scholar 

  4. M. Braz-César, R. Barros, Arch. Appl. Mech. 87, 893 (2017)

    Article  ADS  Google Scholar 

  5. Y. Li, H. Zhang, Z. Yang, B. Yuan, Z. Yuan, H. Xue, Optik 172, 730 (2018)

    Article  ADS  Google Scholar 

  6. Y. Zhao, R. Lv, Yu. Zhang, Q. Wang, Opt. Las. Eng. 50, 1177 (2012)

    Article  Google Scholar 

  7. X. Fang, J. Xuan, Q. Li, Nanoscale Res. Lett. 6, 237 (2011)

    Article  ADS  Google Scholar 

  8. X. Yang, Y. Liu, Y. Zheng, S. Li, L. Yan, T. Yuan, C. Tong, Opt. Comm. 304, 83 (2013)

    Article  ADS  Google Scholar 

  9. V.E. Gusev, A.A. Karabutov, Laser optoacoustics (AIP Press, New York, 1993)

    Google Scholar 

  10. A.A. Karabutov, I.M. Pelivanov, N.B. Podymova, S.E. Skipetrov, Quantum Electron. 29, 1054 (1999)

    Article  ADS  Google Scholar 

  11. M. Khoroshahi, A. Mandelis, Int. J. Thermophys. 36, 880 (2015)

    Article  ADS  Google Scholar 

  12. F.R. Lamastra, M.L. Grilli, G. Leahu, A. Belardini, Voti R. Li, C. Sibilla, D. Salvatori, I. Cacciotti, F. Nanni, Int. J. Thermophys. 39, 110 (2018)

    Article  ADS  Google Scholar 

  13. I.M. Pelivanov, S.A. Belov, V.S. Solomatin, T.D. Khohlova, A.A. Karabutov, Quantum Electron. 36, 1089 (2006)

    Article  ADS  Google Scholar 

  14. J.A. Balderas-López, Y.M. Gómez y Gómez, M.E. Bautista-Ramízez, J.A. Pescador-Rojas, L. Martínez-Pérez, P.A. Lomelí-Mejía, Int. J. Thermophys. 39, 37 (2018)

    Article  ADS  Google Scholar 

  15. Z.J. Chen, J.W. Wang, S.Y. Zhang, Int. J. Thermophys. 36, 947 (2015)

    Article  ADS  Google Scholar 

  16. P. Abrica-Gonzáles, J.A. Zamora-Justo, B.E. Chaves-Sandoval, G.R. Vázques-Martínez, J.A. Banderas-López, Int. J. Thermophys. 39, 93 (2018)

    Article  ADS  Google Scholar 

  17. T.A. Filimonova, D.S. Volkov, M.A. Proskurnin, I.M. Pelivanov, Photoacoustics 1, 54 (2013)

    Article  Google Scholar 

  18. A. KarabutovA, E.V. Savateeva, N.B. Podymova, A.A. Oraevsky, J. Appl. Phys. 87, 2003 (2000)

    Article  ADS  Google Scholar 

  19. G.M. Spirou, A.A. Oraevsky, I.A. Vitkin, W.M. Whelan, Phys. Med. Biol. 50, 141 (2005)

    Article  Google Scholar 

  20. L.M. Lyamshev, Sov. Phys. Usp. 24, 977 (1981)

    Article  ADS  Google Scholar 

  21. C.K.N. Patel, A.C. Tam, Rev. Mod. Phys. 53, 517 (1981)

    Article  ADS  Google Scholar 

  22. V.P. Zharov, V.S. Letokhov, Laser Optoacoustic Spectroscopy (Springer-Verlag, Berlin Heidelberg, 1986)

    Book  Google Scholar 

  23. A.N. Bolotov, V.V. Novikov, O.A. Novikova, Procedia Engineering 206, 600 (2017)

    Article  Google Scholar 

  24. K.V. Erin, Colloid J. 79, 50 (2017)

    Article  Google Scholar 

  25. E.V. Lakhtina, A.F. Pshenichnikov, Colloid J. 72, 236 (2010)

    Article  Google Scholar 

  26. F.R. Cunha, A.P. Rosa, N.J. Dias, J. Mag. Mag. Mater. 397, 266 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Sokolovskaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolovskaya, Y.G., Podymova, N.B. & Karabutov, A.A. Laser Optoacoustic Method for Measurement of Light Extinction Coefficient and Investigation of Its Spatial Distribution in Colloidal Media. Int J Thermophys 41, 86 (2020). https://doi.org/10.1007/s10765-020-02667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02667-y

Keywords

Navigation