Skip to main content
Log in

On the Empirical Determination of a Gas–Liquid Supercritical Mesophase and its Phenomenological Definition

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We respond to recent articles (Int. J. Thermophysics 39 139 2018, ibid.40 21 2019) that seek to deny the veracity of the empirical discovery and thermodynamic description of a gas–liquid supercritical mesophase. These IJT articles are misleading because they are based upon a false premise that the mesophase is a hypothetical concept. There is no “mesophase hypothesis” as wrongly stated in the title of article IJT, 40 21, 2019. Unlike the critical point continuity hypothesis of van der Waals (1873), or the universal critical point scaling hypothesis advocated by Anisimov and Sengers, and others since 1965, the supercritical mesophase is an empirical entity. If a hypothetical van der Waals fluid with the properties of a critical-state point with divergent isochoric heat capacity, and with the scaling properties of “universality” theory, were to exist, it could be used to vitiate the second law of thermodynamics. By contrast, the supercritical mesophase, discovered originally from computer experiments, is an empirically established equilibrium fluid region, of two-state systems of gas plus liquid, within a single Gibbs phase; the properties of which are determined by the laws of thermodynamics. Here, we provide a phenomenological definition of the gas–liquid supercritical mesophase that accords with the body of compelling experimental results over a 150-year period since van der Waals including modern computer experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.V. Woodcock, Gibbs density surface of fluid argon: revised critical parameters. Int. J. Thermophys. 35, 1770 (2014)

    Article  ADS  Google Scholar 

  2. J.V. Sengers, M.A. Anisimov, “Comment” (on reference 1). Int. J. Thermophys. 36, 3001 (2015)

    Article  ADS  Google Scholar 

  3. L.V. Woodcock, On the interpretation of near-critical gas–liquid heat capacities. Int. J. Thermophys. 38, 139 (2017)

    Article  ADS  Google Scholar 

  4. I.H. Umirzakov, “New Comment” (on reference 1). Int. J. Thermophys. 39, 8 (2018)

    Article  ADS  Google Scholar 

  5. L.V. Woodcock, On the failures of van der Waals equation-of-state at the gas–liquid critical point. Int. J. Thermophysics 39, 120 (2018)

    Article  ADS  Google Scholar 

  6. I.H. Umirzakov, “Comment” (on reference 3). Int. J. Thermophys. 39, 139 (2018)

    Article  Google Scholar 

  7. I.H. Umirzakov, On the failures of the mesophase hypothesis at the gas liquid critical point. Int. J. Thermophys. 40, 21 (2019)

    Article  ADS  Google Scholar 

  8. S.I. Sandler, L.V. Woodcock, Historical observations of the laws of thermodynamics. J. Chem. Eng. Data 55, 4485–4490 (2010). [Rowlinson special issue]

    Article  Google Scholar 

  9. K.W. Kratky, Is the percolation transition of hard spheres a thermodynamic phase transition? J. Stat. Phys. 52, 1413–1421 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  10. L.V. Woodcock, Percolation transitions in the hard-sphere fluid. J. AICh.E. 58, 1610–1618 (2011)

    Article  Google Scholar 

  11. L.V. Woodcock, Thermodynamic description of liquid state limits. J. Phys. Chem. (B) 116, 3735–3744 (2012)

    Article  Google Scholar 

  12. L.V. Woodcock, Observations of a thermodynamic liquid–gas critical coexistence line and supercritical phase bounds from percolation loci. Fluid Phase Equilib. 351, 25–33 (2013)

    Article  Google Scholar 

  13. L. Vega, E. de Miguel, L.F. Rull, G. Jackson, I.A. McLure, Phase equilibria and critical behavior of square-well fluids of variable width by Gibbs ensemble Monte Carlo computation. J. Chem. Phys 96, 2296–2305 (1992)

    Article  ADS  Google Scholar 

  14. J.R. Elliott, L. Hu, Vapor-liquid equilibria of square-well fluids. J. Chem. Phys. 110, 3043–3048 (1999)

    Article  ADS  Google Scholar 

  15. A. Benavides, J. Alejendre, F. del Rio, Properties of square-well fluids of variable width IV molecular dynamics test of the van der Waals and long-range approximation. Mol. Phys. 74, 321–331 (1991)

    Article  ADS  Google Scholar 

  16. H.J. Magnier, R. Curtis, L.V. Woodcock, Nature of the supercritical mesophase. Nat. Sci. 6, 797–807 (2014)

    Google Scholar 

  17. H. J. Magnier, Understanding biopharmaceutical aggregation using minimalist models based on square-well potential. Ph.D. Thesis: University of Manchester (UK: 2016)

  18. D.M. Heyes, L.V. Woodcock, Critical and supercritical properties of Lennard-Jones fluids. Fluid Phase Equilib. 356, 301–308 (2013)

    Article  Google Scholar 

  19. D.M. Heyes, The Lennard-Jones fluid in the liquid–vapor critical region. CMST 21, 169–179 (2015)

    Article  Google Scholar 

  20. L.V. Woodcock, Thermodynamics of criticality: percolation loci, mesophases and a critical dividing line in binary-liquid and liquid–gas equilibria. J. Mod. Phys. 7, 760–773 (2016). https://doi.org/10.4236/jmp.2016.78071

    Article  Google Scholar 

  21. L.V. Woodcock, Percolation transitions and fluid state boundaries. CMST 23, 281–294 (2017)

    Article  Google Scholar 

  22. S. Reif-Ackerman, Review: History of the law of rectilinear diameters. Quimica Nova 33, 2003 (2010)

    Article  Google Scholar 

  23. W.P. Bradley, A.W. Browne, C.F. Hale, Liquid above the critical temperature. Phys. Rev. 27, 90–95 (1908)

    ADS  Google Scholar 

  24. J. D. van der Waals, Nobel Lecture 12th December 1910 “The equation of state of gases and liquids”, Nobel Lectures in Physics 1901–1921 (Elsevier: Amsterdam 1967J. https://www.nobelprize.org/prizes/physics/1910/waals/lecture/

  25. J.S. Tapp, E.W.R. Steacie, O. Maass, An investigation into the density of a vapor in equilibrium with a liquid near its critical temperature. Can. J. Res. 9, 217–239 (1933)

    Article  Google Scholar 

  26. C.A. Winkler, O. Maass, Density differences at the critical temperature. Can. J. Res. 9, 613–629 (1933)

    Article  Google Scholar 

  27. O. Maass, A.L. Geddes, The persistence of the liquid state of aggregation above the critical temperature: the system ethylene. Phil. Trans. Roy. Soc. (London) A236, 303–332 (1937)

    ADS  Google Scholar 

  28. I. Traube, On the critical temperature. Trans. Faraday Soc. 34, 1234–1235 (1938)

    Article  Google Scholar 

  29. E. McCormack, W.G. Schneider, Isotherms of sulphur hexafluoride in the critical temperature region. Can. J. Chem. 29, 699–714 (1951)

    Article  Google Scholar 

  30. M. A. Weinberger, W. G. Schneider, On the liquid vapor coexistence curve of xenon in the region of the critical temperature, Can. J. Chem., 30, 422–437, ibid 815, ibid 847 (1952)

  31. H.W. Habgood, W.G. Schneider, PVT Measurements in the critical region of xenon. Can. J. Chem. 32, 98–112 (1954)

    Article  Google Scholar 

  32. T. Andrews, On the continuity of gas and liquid states of matter. Proc. R. Soc. (London) 159, 575–590 (1869)

    ADS  Google Scholar 

  33. L.V. Woodcock, Thermodynamic fluid equations-of-state for argon isotherms. Int. J. Thermophys. 20, 22 (2019)

    Google Scholar 

  34. E.W. Lemmon, M.O. McLinden, D.G. Friend, Thermophysical properties of fluid systems, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom, W.G. Mallard, NIST, Gaithersburg MD, 20899 (retrieved Jan. 25, 2018)

  35. R. Gilgen, R. Kleinrahm, W. Wagner, Measurement and correlation of the pressure–density–temperature relation of argon, J. Chem. Thermodyn. 26, 383 (1994): ibid. 26, 399 (1994)

  36. L. V. Woodcock, Thermodynamics of gas–liquid criticality: rigidity symmetry on Gibbs density surface, JETC 2015-Proceedings, Int. J. Thermophys., 37, 24 (2016)

  37. L. V. Woodcock, Thermodynamics of supercritical colloidal equilibrium states: hetero-phase fluctuations, JETC-2019 Proceedings: Entropy, 21, 1189 (2019)

  38. A.A. Mills, The critical transition between the liquid and gaseous conditions of matter. Endeavour 17(4), 203–209 (1993)

    Article  Google Scholar 

  39. E.A. Guggenheim, The principle of corresponding states. J. Chem. Phys. 13, 253–261 (1945)

    Article  ADS  Google Scholar 

  40. L.V. Woodcock, Gibbs density surface of water and steam: 2nd debate on the absence of van der Waals critical point. Nat. Sci. 6(6), 411–432 (2014). https://doi.org/10.4236/ns.2014.66041

    Article  Google Scholar 

Download references

Acknowledgements

We thank I. H. Umizarkov for reporting [7] an error in Ref. [5] (see Errata)

Errata: “ p “ in Eqs. 2, 3 and 5 of Ref. [5] should read “ p* “. (NB this omission does not affect any of the equations used, nor does it affect any of the scientific content or conclusions of Ref. [5])

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie V. Woodcock.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woodcock, L.V. On the Empirical Determination of a Gas–Liquid Supercritical Mesophase and its Phenomenological Definition. Int J Thermophys 41, 70 (2020). https://doi.org/10.1007/s10765-020-02644-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02644-5

Keywords

Navigation