Skip to main content

Advertisement

Log in

Characterizing Sugarcane Production Areas Using Actual Yield and Edaphoclimatic Condition Data for the State of Goiás, Brazil

  • Research
  • Published:
International Journal of Plant Production Aims and scope Submit manuscript

Abstract

Sugarcane (Saccharum officinarum L.) yield is affected by climate, soil and management. The main approach used in Brazil defines the suitable area for growth considering soil and climate data, without considering the capacity of local management in reducing yield-limiting factors. Thus, the aim of this study is to characterize homogenous areas using sugarcane actual yield, climate, total plant-available soil water capacity (TASW), and production intensity data. The study was conducted in the Goiás state, totalizing 246 counties. The first step was to group areas based on actual yield obtained from 1973 to 2016. The groups were characterized considering climate (rainfall and air temperature), soil (TASW), and sugarcane production data. Actual sugarcane yield formed eight homogenous groups, numbered 1–8, containing 12 and 50 counties each group. The counties groups with a higher yield have a higher production intensity. They are near mills, have a higher TASW, and are divided in traditional and recent expansion areas. The counties groups with a lower yield have a lower TASW and a higher air temperature. Hotter regions are in the western and northern state border. New areas of expansion were available near current sugarcane mills within areas with a higher TASW. Thus, preferential regions were defined by associating edaphoclimatic conditions with high yield. These areas can receive support to improve sugarcane production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ap:

Total cultivated area

AT:

Areas of the municipalities

P:

Rainfall

Tmax :

Maximum air temperature

Tmin :

Minimum air temperature

Tmed :

Average air temperatures

References

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome,300(9), D05109.

    Google Scholar 

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes, G., Leonardo, J., & Sparovek, G. (2013). Köppen's climate classification map for Brazil. Meteorologische Zeitschrift. https://doi.org/10.1127/0941-2948/2013/0507.

    Article  Google Scholar 

  • An-Vo, D. A., Mushtaq, S., Reardon-Smith, K., Kouadio, L., Attard, S., Cobon, D., et al. (2019). Value of seasonal forecasting for sugarcane farm irrigation planning. European Journal of Agronomy. https://doi.org/10.1016/j.eja.2019.01.005.

    Article  Google Scholar 

  • Araújo, R., Junior, J. A., Casaroli, D., & Evangelista, A. W. P. (2016). Variação na qualidade da matéria-prima da cana-de-açúcar em decorrência da suspensão da irrigação antes da colheita e da ocorrência de baixas temperaturas. Bragantia. https://doi.org/10.1590/1678-4499.170.

    Article  Google Scholar 

  • Assad, M. L. L., Sans, L. M. A., Assad, E. D., & Zullo, J., Jr. (2001). Relação entre água retida e conteúdo de areia total em solos brasileiros. Revista Brasileira de Agrometeorologia,9(3), 588–596.

    Google Scholar 

  • Battisti, R., & Sentelhas, P. C. (2015). Drought tolerance of Brazilian soybean cultivars simulated by a simple agrometeorological yield model. Experimental Agriculture. https://doi.org/10.1017/S0014479714000283.

    Article  Google Scholar 

  • Battisti, R., & Sentelhas, P. C. (2017). Improvement of soybean resilience to drought through deep root system in Brazil. Agronomy Journal. https://doi.org/10.2134/agronj2017.01.0023.

    Article  Google Scholar 

  • Battisti, R., Bender, F. D., & Sentelhas, P. C. (2019). Assessment of different gridded weather data for soybean yield simulations in Brazil. Theoretical and applied climatology. https://doi.org/10.1007/s00704-018-2383-y.

    Article  Google Scholar 

  • Battisti, R., Sentelhas, P. C., Pascoalino, J. A. L., Sako, H., Dantas, J. P. S., & Moraes, M. F. (2018). Soybean yield gap in the areas of yield contest in Brazil. International Journal of Plant Production. https://doi.org/10.1007/s42106-018-0016-0.

    Article  Google Scholar 

  • Bergamaschi, H. (2007). O clima como fator determinante da fenologia das plantas. Fenologia: ferramenta para conservação, melhoramento e manejo de recursos vegetais arbóreos. Colombo Embrapa Florestas,1, 291–310.

    Google Scholar 

  • Caetano, J. M., & Casaroli, D. (2017). Sugarcane yield estimation for climatic conditions in the state of Goiás. Revista Ceres. https://doi.org/10.1590/0034-737x201764030011.

    Article  Google Scholar 

  • Cardozo, N. P., & Sentelhas, P. C. (2013). Climatic effects on sugarcane ripening under the influence of cultivars and crop age. Scientia Agricola. https://doi.org/10.1590/s0103-90162013000600011.

    Article  Google Scholar 

  • Cardozo, N. P., Sentelhas, P. C., Panosso, A. R., Palhares, A. L., & Ide, B. Y. (2015). Modeling sugarcane ripening as a function of accumulated rainfall in Southern Brazil. International journal of biometeorology. https://doi.org/10.1007/s00484-015-0998-6.

    Article  PubMed  Google Scholar 

  • Clements, H. F. (1940). Integration of climatic and physiologic factors with reference to the production of sugar cane. Hawaiian Planters' Record,44, 201–231.

    CAS  Google Scholar 

  • Companhia Nacional De Abastecimento (CONAB) 2018. Acompanhamento da safra brasileira de cana-de-açúcar – v. 4 - Safra 2017/18, n.2 - Segundo levantamento, Brasília: Conab, 2017. p.1–73. Disponível em: %3chttps://www.conab.gov.br/OlalaCMS/uploads/arquivos/17_08_24_08_59_54_boletim_can a_portugues_-_2o_lev_-_17–18.pdf%3e. Acesso em 12 abril. 2018.

  • Dias, H. B., & Sentelhas, P. C. (2018). Sugarcane yield gap analysis in Brazil–A multi-model approach for determining magnitudes and causes. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2018.05.017.

    Article  PubMed  Google Scholar 

  • Ferreira, L. C. O., Silva, R. F., Silva, A. O., & Lima, D. A. L. L. (2011). Expansão da produtividade da cana de açúcar no Estado de Goiás, destacando o Sudoeste Goiano. Jornada acadêmica ciência, inovação e tecnologia no bioma cerrado,5(1), 1–5.

    Google Scholar 

  • Frei, F. (2006). Introdução à análise de agrupamentos (p. 109). São Paulo: Editora Unesp.

    Google Scholar 

  • Goldemberg, J., Mello, F. F., Cerri, C. E., Davies, C. A., & Cerri, C. C. (2014). Meeting the global demand for biofuels in 2021 through sustainable land use change policy. Energy Policy. https://doi.org/10.1016/j.enpol.2014.02.008.

    Article  Google Scholar 

  • Instituto Brasileiro De Geografia E Estatística (IBGE) 2018. https://www.ibge.gov.br/.

  • Isaaks, E. H., & Srivastava, R. M. (1989). An Introduction to Applied Geostatistics (p. 413). New York: Oxford University Press.

    Google Scholar 

  • Laclau, P. B., & Laclau, J. P. (2009). Growth of the whole root system for a plant crop of sugarcane under rainfed and irrigated environments in Brazil. Field Crops Research,114, 351–360.

    Article  Google Scholar 

  • Magalhães, A. C. N. (1987). Ecofisiologia da cana-de-açúcar: aspectos do metabolismo do carbono na planta Ecofisiologia da produção (pp. 113–118). Piracicaba: Associação Brasileira para a Pesquisa da Potassa e do Fosfato.

    Google Scholar 

  • Manly, B. F., & Alberto, J. A. N. (2016). Multivariate statistical methods: a primer. London: Chapman and Hall/CRC.

    Google Scholar 

  • MAPA (Minister of Agriculture, Livestock and Food Supply). Agroclimatic Risk Zoning. https://www.agricultura.gov.br/politica-agricola/zoneamento-agricola. Accessed: 01 Mar 2018.

  • Marin, F. R., & Carvalho, G. L. D. (2012). Spatio-temporal variability of sugarcane yield efficiency in the state of São Paulo. Brazil. Pesquisa Agropecuária Brasileira. https://doi.org/10.1590/S0100-204X2012000200001.

    Article  Google Scholar 

  • Marin, F. R., Edreira, J. I. R., Andrade, J., & Grassini, P. (2019). On-farm sugarcane yield and yield components as influenced by number of harvests. Field Crops Research. https://doi.org/10.1016/j.fcr.2019.06.011.

    Article  Google Scholar 

  • Marin, F., & Nassif, D. S. (2013). Mudanças climáticas e a cana-de-açúcar no Brasil: Fisiologia, conjuntura e cenário futuro. Revista Brasileira de Engenharia Agrícola e Ambiental-Agriambi. https://doi.org/10.1590/S1415-43662013000200015.

    Article  Google Scholar 

  • Miranda, J.I. (2010). Fundamentos de Sistemas de Informações, Geográficas. 2nd ed. rev. Brasília/DP. Embrapa Informação Tecnológica.

  • Miranda, I. M., & da Silva Neto, W. A. (2014). Mapeamento agropecuário das mesorregiões do estado de Goiás (1970–2010) (p. 62). Goiânia: FACE/UFG (No. 039).

  • Molin, J. P., Amaral, L. R., & Colaço, A. F. (2015). Agricultura de Precisão (p. 238). São Paulo: Oficina de Textos.

    Google Scholar 

  • Monteiro, L. A., & Sentelhas, P. C. (2014). Potential and actual sugarcane yields in southern Brazil as a function of climate conditions and crop management. Sugar Tech. https://doi.org/10.1007/s12355-013-0275-0.

    Article  Google Scholar 

  • Monteiro, L. A., & Sentelhas, P. C. (2017). Sugarcane yield gap: can it be determined at national level with a simple agrometeorological model? Crop and Pasture Science. https://doi.org/10.1071/cp16334.

    Article  Google Scholar 

  • Pereira, F. A. C., & Soares, A. F. (2017). Avaliação dos riscos envolvidos na produção de milho e soja nos municípios do Mato Grosso. Revista IPecege,3(2), 38–51.

    Article  Google Scholar 

  • QGIS Development Team 2018. QGIS Geographic Information System, version 3.0.1. https://www.qgis.org.

  • Radam Brasil. 1974. Levantamento de recursos naturais. Rio de Janeiro, 4. (In Portuguese).

  • Ramburan, S. (2015). Interactions affecting the optimal harvest age of sugarcane in rainfed regions of South Africa. Field Crops Research. https://doi.org/10.1016/j.fcr.2015.08.003.

    Article  Google Scholar 

  • Rao, I. V. Y. (2012). Efficiency, yield gap and constraints analysis in irrigated vis-à-vis rainfed sugarcane in North Coastal Zone of Andhra Pradesh. Agricultural Economics Research Review,25(1), 167–171.

    Google Scholar 

  • Reichert, J. M., Albuquerque, J. A., Kaiser, D. R., Reinert, D. J., Urach, F. L., & Carlesso, R. (2009). Estimation of water retention and availability in soils of Rio Grande do Sul. Revista Brasileira de Ciência do Solo. https://doi.org/10.1590/S0100-06832009000600004.

    Article  Google Scholar 

  • Scarpare, F. V., van Lier, Q. D. J., de Camargo, L., Pires, R. C. M., Ruiz-Corrêa, S. T., Bezerra, A. H. F., et al. (2019). Tillage effects on soil physical condition and root growth associated with sugarcane water availability. Soil and Tillage Research. https://doi.org/10.1016/j.still.2018.12.005.

    Article  Google Scholar 

  • Sentelhas, P. C., Battisti, R., Câmara, G. M. S., Farias, J. R. B., Hampf, A., & Nendel, C. (2015). The soybean yield gap in Brazil magnitude, causes and possible solution. Journal of Agricultural Science,158, 1394–1411. https://doi.org/10.1017/S0021859615000313.

    Article  Google Scholar 

  • Silva, F. C. A., Mendonça, G. H., & Lunas, D. A. L. (2015). Territorialização do Agronegócio e as Novas Dinâmicas no Sudoeste e Norte de Goiás. Revista Espacios,36(13), 18.

    Google Scholar 

  • Silva, M. D. A., Arantes, M. T., Rhein, A. F. D. L., Gava, G. J., & Kolln, O. T. (2014a). Potencial produtivo da cana-de-açúcar sob irrigação por gotejamento em função de variedades e ciclos. Revista Brasileira de Engenharia Agrícola e Ambiental. https://doi.org/10.1590/S1415-43662014000300001.

    Article  Google Scholar 

  • Silva, M. D. A., Jifon, J. L., Da Silva, J. A. G., Dos Santos, C. M., & Sharma, V. (2014b). Relationships between physiological traits and productivity of sugarcane in response to water deficit. The Journal of Agricultural Science. https://doi.org/10.1017/S0021859612000834.

    Article  Google Scholar 

  • Silva, M. S., de Lima, E. E., Leite, H. G., & Corte, V. B. (2013). Biometria de frutos e sementes de Melanoxylon brauna Schott. (Fabaceae-Caesalpinioideae). Cerne,19(3), 517–524.

    Article  Google Scholar 

  • Statistics Division Food and Agriculture Organization of the United Nations (FAOSTAT) 2018. https://www.fao.org/faostat/en/.

  • Teixeira, W. R., Battisti, R., Sentelhas, P. C., Moraes, M. F., & Oliveira Junior, A. (2019). Uncertainty assessment of soya bean yield gaps using DSSAT-CSM-CROPGRO-Soybean calibrated by cultivar maturity groups. Journal of Agronomy and Crop Science,205, 533–544. https://doi.org/10.1111/jac.12343.

    Article  Google Scholar 

  • Verissimo, M. A. A., Oliveira, R. A. D., Daros, E., & Härter, A. (2018). Genetic parameters and performance of sugarcane families under cold stress in the South of Brazil. Pesquisa Agropecuária Brasileira. https://doi.org/10.1590/s0100-204x2018000500007.

    Article  Google Scholar 

  • Vianna, M. D. S., & Sentelhas, P. C. (2014). Simulação do risco de déficit hídrico em regiões de expansão do cultivo de cana-de-açúcar no Brasil. Pesquisa Agropecuária Brasileira. https://doi.org/10.1590/S0100-204X2014000400001.

    Article  Google Scholar 

  • Ward, J. H., Jr. (1963). Hierarchical grouping to optimize an objective function. Journal of the American statistical association. https://doi.org/10.1080/01621459.1963.10500845.

    Article  Google Scholar 

  • Wrege, M. S., Júnior, C. R., Steinmetz, S., Radin, B., & Fritzsons, E. (2018). Risco de déficit hídrico para espécies florestais e frutíferas no rio grande do sul. Revista Ra'e Ga. https://doi.org/10.5380/raega.v44i0.47830.

    Article  Google Scholar 

  • Xavier, A. C., King, C. W., & Scanlon, B. R. (2015). Daily gridded meteorological variables in Brazil (1980–2013). International Journal of Climatology. https://doi.org/10.1002/joc.4518.

    Article  Google Scholar 

  • Zhang, B. Q., Yang, L. T., & Li, Y. R. (2015). Physiological and biochemical characteristics related to cold resistance in sugarcane. Sugar Tech. https://doi.org/10.1007/s12355-014-0340-3.

    Article  Google Scholar 

  • Zhao, P., Jackson, P. A., Basnayake, J., Liu, J., Chen, X., Zhao, J., et al. (2017). Genetic variation in sugarcane for leaf functional traits and relationships with cane yield, in environments with varying water stress. Field Crops Research. https://doi.org/10.1016/j.fcr.2017.08.004.

    Article  Google Scholar 

  • Zopelari, A. L. M. S. (2011). Determinants of investment in projects of cane sugar Goiás (2007-2010). 171 f. Goiânia: UFG. Dissertação (Mestrado em Ciências Agrárias).

Download references

Acknowledgements

The authors would like to thank: the Coordination for the Improvement of Higher Education Personnel (CAPES) for the support to this study through a research fellowship for the first author; the National Council for Scientific and Technological Development (CNPq) for the support to this study through a research fellowship for the second, fourth and fifth authors; and Foundation for Research Support of the State of Goiás for the financial support through process no. 201610267001488. The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jéssica Sousa Paixão.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 431 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paixão, J.S., Casaroli, D., Battisti, R. et al. Characterizing Sugarcane Production Areas Using Actual Yield and Edaphoclimatic Condition Data for the State of Goiás, Brazil. Int. J. Plant Prod. 14, 511–520 (2020). https://doi.org/10.1007/s42106-020-00101-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42106-020-00101-9

Keywords

Navigation