Skip to main content
Log in

Growth, Compositions, and Mechanical Characteristics of Sodium–Gadolinium Molybdate Single Crystals

  • CRYSTAL CHEMISTRY
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A concentration series of sodium–gadolinium molybdate single crystals have been grown by the Czochralski method from melts of stoichiometric and some nonstoichiometric compositions in atmospheres with different oxygen contents. The actual compositions, microhardness, and crack resistance of the grown crystals have been investigated. All crystals are characterized by a significant sodium deficit with respect to stoichiometry and a large number of vacancies in the (Na + Gd) sublattice. The range of congruent melting is determined for this compound, and its homogeneity range is estimated to extend (on the scale of atomic concentration ratios Gd/Na) at least from 1.10 to 1.75. It is found that the microhardness of sodium– gadolinium molybdate crystals is significantly anisotropic, whereas the degree of crack resistance anisotropy does not exceed the measurement error. At the same time, neither microhardness nor crack resistance exhibit any significant dependence on the growth charge composition and the synthesis conditions in the investigated range of variation in these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Garcia-Cortes, C. Cascales, A. de Andres, et al., IEEE J. Quantum Electron. 43 (2), 157 (2007).

    Article  ADS  Google Scholar 

  2. S. N. Ushakov, V. A. Romanyuk, P. A. Ryabochkina, et al., Kvantovaya Elektron. 40 (6), 475 (2010).

    Article  Google Scholar 

  3. A. García-Cortés, J. M. Cano-Torres, X. Han, et al., J. Appl. Phys. 101 (6), 063110 (2007).

    Article  ADS  Google Scholar 

  4. A. Schmidt, S. Rivier, V. Petrov, et al., J. Opt. Soc. Am. B: Opt. Phys. 25 (8), 1341 (2008).

    Article  ADS  Google Scholar 

  5. A. A. Kaminskii, H. J. Eichler, K. Ueda, et al., Appl. Opt. 38 (21), 4533 (1999).

    Article  ADS  Google Scholar 

  6. E. V. Zharikov, D. A. Lis, A. V. Popov, et al., Kvantovaya Elektron. 36 (6), 515 (2006).

    Article  Google Scholar 

  7. A. Garcia-Cortes, J. M. Cano-Torres, M. D. Serrano, et al., IEEE J. Quantum Electron. 43, 758 (2007).

    Article  ADS  Google Scholar 

  8. A. A. Lagatsky, X. Han, M. D. Serrano, et al., Opt. Lett. 35, 3027 (2010).

    Article  ADS  Google Scholar 

  9. E. V. Zharikov, D. A. Lis, A. M. Onishchenko, et al., Kvantovaya Elektron. 36 (1), 39 (2006).

    Article  Google Scholar 

  10. A. Arakcheeva, D. Logvinovich, G. Chapuis, et al., Chem. Sci. 3, 384 (2012).

    Article  Google Scholar 

  11. C. Zhao, X. Yin, F. Huang, et al., J. Solid State Chem. 184, 3190 (2011).

    Article  ADS  Google Scholar 

  12. C. Cascales, A. Mendez-Blas, M. Rico, et al., Opt. Mater. 27, 1672 (2005).

    Article  ADS  Google Scholar 

  13. V. K. Trunov, V. A. Efremov, and Yu. A. Velikodnyi, Crystal Chemistry and Properties of Double Molybdates and Tungstates (Nauka, Leningrad, 1986) [in Russian], p. 171.

    Google Scholar 

  14. P. A. Ryabochkina, S. A. Antoshkina, S. A. Klimin, et al., J. Lumin. 138, 32 (2013).

    Article  Google Scholar 

  15. F. A. Bolschikov, G. M. Kuz’micheva, D. A. Lis, et al., J. Cryst. Growth 311 (17), 4171 (2009).

    Article  ADS  Google Scholar 

  16. L. D. Merkle, M. Dubinskii, B. Zandi, et al., Opt. Mater. 27, 343 (2004).

    Article  ADS  Google Scholar 

  17. E. V. Zharikov, D. A. Lis, K. A. Subbotin, et al., Acta Phys. Pol. A 124 (2), 274 (2013).

    Article  Google Scholar 

  18. V. Volkov, M. Rico, A. Mendez-Blas, et al., J. Phys. Chem. Solids 63, 95 (2002).

    Article  ADS  Google Scholar 

  19. J. Fan, H. Zhang, J. Wang, et al., J. Phys. D: Appl. Phys. 39, 1041 (2006).

    ADS  Google Scholar 

  20. A. Mendez-Blas, V. Volkov, C. Cascales, et al., J. Alloys Compd. 323–324, 315 (2001).

    Article  Google Scholar 

  21. E. Ya. Rode, V. N. Karpov, and M. M. Ivanova, Zh. Neorg. Khim. 16, 1713 (1971).

    Google Scholar 

  22. T. M. Rybakova, Extended Abstract of Cand. Sci. Dissertation in Chemistry (Moscow State University, Moscow, 1974), p. 16.

  23. A. A. Maier, M. V. Provotorov, and V. A. Balashov, Usp. Khim. 42, 1788 (1973).

    Article  Google Scholar 

  24. E. Ya. Rode, G. A. Balagina, M. M. Ivanova, et al., Zh. Neorg. Khim. 13, 762 (1968).

    Google Scholar 

  25. W. W. Ge, H. J. Zhang, J. Y. Wang, et al., J. Appl. Phys. 98, 013542 (2005).

    Article  ADS  Google Scholar 

  26. E. E. Dunaeva, L. I. Ivleva, G. M. Kuz’micheva, et al., Proc. LVII Int. Conf. “Urgent Problems of Strength,” Sevastopol, May 24–27,2016, p. 124.

  27. G. M. Kuz’micheva, E. A. Zagorul’ko, N. B. Bolotina, et al., Crystallogr. Rep. 59 (1), 22 (2014).

    Article  ADS  Google Scholar 

  28. K. A. Subbotin, D. A. Lis, V. V. Slavkina, et al., The 18-th Int. Conf. on Crystal Growth and Epitaxy “ICCGE-18,” Nagoya, Japan, August 7–12,2016, Poster presentation TuP-G06-24.

  29. X. Lu, Z. You, J. Li, et al., Solid State Commun. 146, 292 (2008).

    Article  ADS  Google Scholar 

  30. W. Zhao, Z. Lin, L. Zhang, et al., J. Alloys Compd. 509 (6), 2815 (2011).

    Article  Google Scholar 

  31. V. Morozov, A. Arakcheeva, B. Redkin, et al., Inorg. Chem. 51 (9), 5324 (2012).

    Article  Google Scholar 

  32. G. M. Kuz’micheva, I. A. Kaurova, V. B. Rybakov, et al., Cryst. Eng. Commun. 18, 2928 (2016).

    Google Scholar 

  33. K. M. Tumanyan, M. M. Gevorkyan, and R. E. Voskanyan, USSR Inventor’s Certificate no. SU 1082875 A (June 16, 1982), p. 3.

  34. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 13 (1982).

    Article  Google Scholar 

  35. V. B. Dudnikova and E. V. Zharikov, Phys. Solid State 59 (5), 866 (2017).

    Article  ADS  Google Scholar 

  36. G. M. Kuz’micheva, V. B. Rybakov, K. A. Subbotin, et al., Russ. J. Inorg. Chem. 57 (8), 1128 (2012).

    Article  Google Scholar 

  37. G. B. Lutts, A. L. Denisov, E. V. Zharikov, et al., Opt. Quantum Electron. 22, 269 (1990).

    Article  Google Scholar 

  38. R. D. Shannon, Acta Crystallogr. A 32 (6), 751 (1976).

    Article  ADS  Google Scholar 

  39. G. R. Anstis, P. Chantikul, B. R. Lawn, et al., J. Am. Ceram. Soc. 64 (9), 533 (1981).

    Article  Google Scholar 

  40. A. V. Vinogradov, V. A. Lomonov, Yu. A. Pershin, et al., Crystallogr. Rep. 47 (6), 1036 (2002).

    Article  ADS  Google Scholar 

  41. M. Yu. Gryaznov, S. V. Shotin, V. N. Chuvil’deev, et al., Crystallogr. Rep. 57 (1), 144 (2012).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 18-12-00517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Subbotin.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subbotin, K.A., Titov, A.I., Lis, D.A. et al. Growth, Compositions, and Mechanical Characteristics of Sodium–Gadolinium Molybdate Single Crystals. Crystallogr. Rep. 65, 182–190 (2020). https://doi.org/10.1134/S106377452002025X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377452002025X

Navigation