Skip to main content
Log in

X-Ray Structure and Molecular Dynamics Study of Uridine Phosphorylase from Vibrio cholerae in Complex with 2,2'-Anhydrouridine

  • STRUCTURE OF MACROMOLECULAR COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The high-resolution three-dimensional structure of uridine phosphorylase from the pathogenic bacterium Vibrio cholerae in complex with the competitive inhibitor 2,2'-anhydrouridine was determined by X-ray diffraction (RCSBPDB ID: 6RCA). The three-dimensional structure of this complex is compared with the previously determined structures of V. cholerae uridine phosphorylase in complex with the substrate (uridine) and S. typhimurium uridine phosphorylase in complex with 2,2'-anhydrouridine. The protein–inhibitor and protein–substrate binding free energies were calculated by the free-energy perturbation method. The number of stable hydrogen bonds between the 2,2'-anhydrouridine molecule and the active site of the enzyme is smaller and these bonds are longer compared to the natural substrate of the enzyme (uridine). However, calculations taking into account solvation energy of the molecule and the entropy effects showed that the binding of the inhibitor (2,2'-anhydrouridine) at the active site of the protein is energetically more favorable than the binding of the native substrate (uridine). These results may be useful in the design of new inhibitors with a higher selectivity for the binding sites of uridine phosphorylases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. Katsumata, H. Tomioka, T. Sumi, et al., Cancer Chemother Pharmacol. 51, 155 (2003).

    Article  Google Scholar 

  2. P. J. Finan, P. A. Koklitis, E. M. Chisholm, et al., Br. J. Cancer 50, 711 (1984).

    Article  Google Scholar 

  3. A. Leyva, I. Kraal, J. Lankelma, et al., Anticancer Res. 3, 227 (1983).

    Google Scholar 

  4. A. Kanzaki, Y. Takebayashi, H. Bando, et al., Int. J. Cancer 97, 631 (2002).

    Article  Google Scholar 

  5. C. Luccioni, J. Beaumatin, V. Bardot, et al., Int. J. Cancer 58, 517 (1994).

    Article  Google Scholar 

  6. M. H. el Kouni, F. N. Naguib, J. G. Niedzwicki, et al., J. Biol. Chem. 263, 6081 (1988).

    Google Scholar 

  7. A. K. Drabikowska, L. Lissowska, Z. Veres, et al., Biochem. Pharmacol. 36, 4125 (1987).

    Article  Google Scholar 

  8. Z. Veres, A. Neszmelyi, A. Szabolcs, et al., Eur. J. Biochem. 178, 173 (1988).

    Article  Google Scholar 

  9. S. Watanabe, A. Hino, K. Wada, et al., J. Biol. Chem. 270, 12191 (1995).

    Article  Google Scholar 

  10. M. H. el Kouni, F. N. Naguib, S. H. Chu, et al., Mol. Pharmacol. 34, 104 (1988).

    Google Scholar 

  11. F. N. Naguib, J. G. Niedzwicki, M. H. Iltzsch, et al., Leuk. Res. 11, 855 (1987).

    Article  Google Scholar 

  12. A. A. Lashkov, N. E. Zhukhlistova, S. E. Sotnichenko, et al., Crystallogr. Rep. 55 (1), 41 (2010).

    Article  ADS  Google Scholar 

  13. A. A. Lashkov, N. E. Zhukhlistova, A. G. Gabdoulkhakov, et al., Acta Crystallogr. D 66, 51 (2010).

    Article  Google Scholar 

  14. V. I. Timofeev, A. A. Lashkov, A. G. Gabdoulkhakov, et al., Acta Crystallogr. F 63, 852 (2007).

    Article  Google Scholar 

  15. A. A. Lashkov, A. G. Gabdulkhakov, I. I. Prokofev, et al., Acta Crystallogr. F 68, 1394 (2012).

    Article  Google Scholar 

  16. I. I. Prokofev, A. A. Lashkov, A. G. Gabdulkhakov, et al., Acta Crystallogr. F 70, 60 (2014).

    Article  Google Scholar 

  17. M. Zolotukhina, I. Ovcharova, S. Eremina, et al., Res. Microbiol. 154, 510 (2003).

    Article  Google Scholar 

  18. W. Kabsch, Acta Crystallogr. D 66, 125 (2010).

    Article  Google Scholar 

  19. A. J. Mccoy, R. W. Grosse-Kunstleve, P. D. Adams, et al., J. Appl. Crystallogr. 40, 658 (2007).

    Article  Google Scholar 

  20. A. J. McCoy, Acta Crystallogr. D 63, 32 (2007).

    Article  Google Scholar 

  21. I. I. Prokofev, A. A. Lashkov, A. G. Gabdulkhakov, et al., Crystallogr. Rep. 63 (3), 418 (2018).

    Article  ADS  Google Scholar 

  22. P. D. Adams, P. V. Afonine, G. Bunkoczi, et al., Acta Crystallogr. D 66, 213 (2010).

    Article  Google Scholar 

  23. P. V. Afonine, R. W. Grosse-Kunstleve, N. Echols, et al., Acta Crystallogr. D 68, 352 (2012).

    Article  Google Scholar 

  24. P. Emsley and K. Cowtan, Acta Crystallogr. D 60, 2126 (2004).

    Article  Google Scholar 

  25. P. Emsley, B. Lohkamp, W. G. Scott, et al., Acta Crystallogr. D 66, 486 (2010).

    Article  Google Scholar 

  26. I. W. Davis, A. Leaver-Fay, V. B. Chen, et al., Nucleic Acids Res. 35, 375 (2007).

    Article  Google Scholar 

  27. W. L. DeLano, Abstr. Pap. Am. Chem. Soc. 228, 313 (2004).

    Google Scholar 

  28. D. Van Der Spoel, E. Lindahl, B. Hess, et al., J. Comput. Chem. 26, 1701 (2005).

    Article  Google Scholar 

  29. A. D. MacKerell, D. Bashford, M. Bellott, et al., J. Phys. Chem. B 102, 3586 (1998).

    Article  Google Scholar 

  30. A. D. MacKerell, Abstr. Pap. Am. Chem. Soc. 216, 696 (1998).

    Google Scholar 

  31. J. Huang, S. Rauscher, G. Nawrocki, et al., Nat. Methods 14, 71 (2016).

    Article  Google Scholar 

  32. K. Vanommeslaeghe, E. Hatcher, C. Acharya, et al., J. Comput. Chem. 31, 671 (2010).

    Google Scholar 

  33. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).

    Article  ADS  Google Scholar 

  34. G. Bussi and M. Parrinello, Comput. Phys. Commun. 179, 26 (2008).

    Article  ADS  Google Scholar 

  35. B. J. Leimkuhler, S. Reich, and R. D. Skeel, Mathematical Approaches to Biomolecular Structure and Dynamics, Ed. by J. P. Mesirov et al., The IMA Volumes in Mathematics and Its Applications, Vol. 82 (Springer, New York, 1996), p. 161.

  36. J. Aqvist and J. Marelius, Comb. Chem. High Throughput Screening 4, 613 (2001).

    Article  Google Scholar 

  37. T. Hansson, J. Marelius, and J. Aqvist, J. Comput. Aided Mol. Des. 12, 27 (1998).

    Article  ADS  Google Scholar 

  38. M. Aldeghi, A. Heifetz, M. J. Bodkin, et al., Chem. Sci. 7, 207 (2016).

    Article  Google Scholar 

  39. J. Kirkwood, J. Chem. Phys. 3, 300 (1935).

    Article  ADS  Google Scholar 

  40. S. Boresch, F. Tettinger, M. Leitgeb, et al., J. Phys. Chem. B 107, 9535 (2003).

    Article  Google Scholar 

  41. P. V. Klimovich and D. L. Mobley, J. Comput. Aided Mol. Des. 29, 1007 (2015).

    Article  ADS  Google Scholar 

  42. M. R. Shirts and J. D. Chodera, J. Chem. Phys. 129, 124105 (2008).

    Article  ADS  Google Scholar 

  43. I. I. Prokof’ev, A. G. Gabdulkhakov, V. V. Balaev, et al., Crystallogr. Rep. 61, 954 (2016).

    Article  ADS  Google Scholar 

  44. W. G. Touw, C. Baakman, J. Black, et al., Nucl. Acids Res. 43, 364 (2015).

    Article  Google Scholar 

  45. T. T. Caradoc-Davies, S. M. Cutfield, I. L. Lamont, et al., J. Mol. Biol. 337, 337 (2004).

    Article  Google Scholar 

  46. A. A. Lashkov, N. E. Zhukhlistova, A. H. Gabdoulkhakov, et al., Acta Crystallogr. D 66, 51 (2010).

    Article  Google Scholar 

  47. A. M. Mikhailov, E. A. Smirnova, V. L. Tsuprun, et al., Biochem. Int. 26, 607 (1992).

    Google Scholar 

  48. Federal Research Center Computer Science and Control of Russian Academy of Sciences. Available at http://hhpcc.frccsc.ru

Download references

ACKNOWLEDGMENTS

The calculations were performed by Hybrid high-performance computing cluster of FRC CS RAS [48].

Funding

This work was supported by the Ministry of Science and Higher Education within the State assignment FSRC “Crystallography and Photonics” RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lashkov.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eistrikh-Heller, P.A., Rubinsky, S.V., Prokofev, I.I. et al. X-Ray Structure and Molecular Dynamics Study of Uridine Phosphorylase from Vibrio cholerae in Complex with 2,2'-Anhydrouridine. Crystallogr. Rep. 65, 269–277 (2020). https://doi.org/10.1134/S1063774520020066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520020066

Navigation