Skip to main content
Log in

Molecular Dynamics Simulation of Structural and Transport Properties of Solid Solutions of Double Perovskites Based on PrBaCo2O5.5

  • PHYSICAL PROPERTIES OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The oxygen diffusion has been simulated by the molecular dynamics method in the solid solutions of PrBaCo2O5.5-based double perovskites: PrBa0.5Sr0.5Co2O5.5 with random substitution of half of Ba atoms by Sr atoms, PrBa0.5Sr0.5CoFeO5.5 with random substitution Ba → Sr and Co → Fe, PrBa0.5Sr0.5CoCuO5.5 with random substitution Ba → Sr and Co → Cu, and PrBa0.5Sr0.5CuFeO5.5 with random substitution Ba → Sr and random substitution of Co atoms by Fe and Cu atoms. It is shown that, varying the oxygen nonstoichiometry and/or chemical composition of solid solutions based on PrBa0.5Sr0.5Co2O5.5, one can significantly change the coefficient of thermal expansion of the materials. It is established for the first time that the maximum difference between the mobilities of oxygen atoms of different types observed in PrBa0.5Sr0.5Co2O5.5 significantly decreases at partial substitutions of cobalt by iron and copper. In the PrBa0.5Sr0.5CuFeO5.5 solid solution, the oxygen atom mobility in the (Cu,Fe)–O layers becomes somewhat higher than that in the Pr–O layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. B. C. H. Steele and A. Heinzel, Nature 414, 345 (2001).

    Article  ADS  Google Scholar 

  2. E. D. Wachsman and K. T. Lee, Science 334, 935 (2011).

    Article  ADS  Google Scholar 

  3. Y. L. Yang, A. J. Jacobson, C. L. Chen, et al., Appl. Phys. Lett. 79, 776 (2001).

    Article  ADS  Google Scholar 

  4. C. Peters, A. Weber, and E. Ivers-Tiffée, J. Electrochem. Soc. 155, B730 (2008).

    Article  Google Scholar 

  5. Z. P. Shao and S. M. Haile, Nature 431, 170 (2004).

    Article  ADS  Google Scholar 

  6. C. C. Kan, H. H. Kan, F. M. van Assche, et al., J. Electrochem. Soc. 155, B985 (2008).

    Article  Google Scholar 

  7. M. Li, M. Zhao, F. Li, et al., Nat. Commun. 8, 13990 (2017).

    Article  ADS  Google Scholar 

  8. J. B. Smith and T. Norby, J. Electrochem. Soc. 153, A233 (2006).

    Article  Google Scholar 

  9. J.-H. Kim, K.-T. Lee, Y. N. Kim, et al., J. Mater. Chem. 21, 2482 (2011).

    Article  Google Scholar 

  10. F. Prado, J.-H. Kim, and A. Manthiram, Solid State Ionics 192, 241 (2011).

    Article  Google Scholar 

  11. J.-H. Kim and A. Manthiram, Chem. Mater. 22, 822 (2010).

    Article  Google Scholar 

  12. A. A. Taskin, A. N. Lavrov, and Y. Ando, Prog. Solid State Chem. 35, 481 (2007).

    Article  Google Scholar 

  13. A. Chang, S. J. Skinner, and J. A. Kilner, Solid State Ionics 177, 2009 (2006).

    Article  Google Scholar 

  14. A. Tarancón, A. Morata, G. Dezanneau, et al., J. Power Sources 174, 255 (2007).

    Article  ADS  Google Scholar 

  15. A. Tarancón, J. Peña-Martínez, D. Marrero-López, et al., Solid State Ionics 179, 2372 (2008).

    Article  Google Scholar 

  16. A. Orera and P. R. Slater, Chem. Mater. 22, 675 (2010).

    Article  Google Scholar 

  17. J.-H. Kim and A. Manthiram, J. Mater. Chem. A 3, 24195 (2015).

    Article  Google Scholar 

  18. X. Zhang and M. Jin, J. Power Sources 195, 1076 (2010).

    Article  ADS  Google Scholar 

  19. J. H. Kim and J. T. S. Irvine, Int. J. Hydrogen Energy 37, 5920 (2012).

    Article  Google Scholar 

  20. Y. Hu, C. Bogicevic, Y. Bouffanais, et al., J. Power Sources 242, 50 (2013).

    Article  ADS  Google Scholar 

  21. X. L. Che, Y. Shen, H. Li, et al., J. Power Sources 222, 288 (2013).

    Article  Google Scholar 

  22. Z. Zhan, K. Świerczek, N. Yoshikura, et al., Solid State Ionics 262, 645 (2014).

    Article  Google Scholar 

  23. L. Zhao, Q. Nian, B. He, et al., J. Power Sources 195, 453 (2010).

    Article  ADS  Google Scholar 

  24. A. Jun, S. Yoo, Y.-W. Ju, et al., J. Mater. Chem. A 3, 15082 (2015).

    Article  Google Scholar 

  25. X. Jiang, Y. Shi, W. Zhou, et al., J. Power Sources 272, 371 (2014).

    Article  ADS  Google Scholar 

  26. S. Yoo, J. Y. Shin, and G. Kim, J. Mater. Chem. 21, 439 (2011).

    Article  Google Scholar 

  27. D. Chen, F. Wang, H. Shi, et al., Electrochim. Acta 78, 466 (2012).

    Article  Google Scholar 

  28. Z. He, L. Xia, Y. Chen, et al., RSC Adv. 5, 57592 (2015).

    Article  Google Scholar 

  29. J. Hermet, B. Dupe, and G. Dezanneau, Solid State Ionics 216, 50 (2012).

    Article  Google Scholar 

  30. I. D. Seymour, A. Chroneos, J. Kilner, et al., Phys. Chem. Chem. Phys. 13, 15305 (2011).

    Article  Google Scholar 

  31. S. Choi, S. Yoo, J. Kim, et al., Sci. Rep. 3, 2426 (2013).

    Article  Google Scholar 

  32. J. Hermet, G. Geneste, and G. Dezanneau, Appl. Phys. Lett. 97, 174102 (2010).

    Article  ADS  Google Scholar 

  33. D. Parfitt, A. Chroneos, A. Tarancon, et al., J. Mater. Chem. 21, 2183 (2011).

    Article  Google Scholar 

  34. I. D. Seymour, A. Tarancon, A. Chroneos, et al., Solid State Ionics 216, 41 (2012).

    Article  Google Scholar 

  35. U. Anjum, S. Vashishtha, N. Sinha, et al., Solid State Ionics 280, 24 (2015).

    Article  Google Scholar 

  36. U. Anjum, S. Vashishtha, M. Agarwal, et al., Int. J. Hydrogen Energy 41, 7631 (2016).

    Article  Google Scholar 

  37. Y. Hu, O. Hernandez, T. Broux, et al., J. Mater. Chem. 22, 18744 (2012).

    Article  Google Scholar 

  38. C. Chen, D. Chen, and F. Ciucci, Phys. Chem. Chem. Phys. 17, 7831 (2015).

    Article  Google Scholar 

  39. A. Maignan, C. Martin, D. Pelloquin, et al., J. Solid State Chem. 142, 247 (1999).

    Article  ADS  Google Scholar 

  40. J. Martínez et al., Chem. Mater. 25, 2638 (2013).

    Article  Google Scholar 

  41. R. A. Cox-Galhotra, A. Huq, J. P. Hodges, et al., Solid State Ionics 249–250, 34 (2013).

    Article  Google Scholar 

  42. A. K. Azad, J. H. Kim, and J. T. S. Irvine, J. Solid State Chem. 213, 268 (2014).

    Article  ADS  Google Scholar 

  43. W. Smith, I. T. Todorov, and M. Leslie, Z. Kristallogr. 220, 563 (2005).

    Google Scholar 

  44. M. S. Islam, M. Leslie, S. M. Tomlinson, et al., J. Phys. C: Solid State Phys. 21, L109 (1988).

    Article  ADS  Google Scholar 

  45. Computer Modelling in Inorganic Chemistry, Ed. by C. R. A. Catlow (Academic, London, 1997).

    Google Scholar 

  46. S. L. Chaplot, Phys. Rev. B 42, 2149 (1990).

    Article  ADS  Google Scholar 

  47. F. Tietz, Ionics 5, 129 (1999).

    Article  Google Scholar 

  48. G. Kim, S. Wang, A. J. Jacobson, et al., J. Mater. Chem. 17, 2500 (2007).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 17-03-00650.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Ivanov-Schitz.

Additional information

Translated by A. Zolot’ko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galin, M.Z., Ivanov-Schitz, A.K. & Mazo, G.N. Molecular Dynamics Simulation of Structural and Transport Properties of Solid Solutions of Double Perovskites Based on PrBaCo2O5.5. Crystallogr. Rep. 65, 289–296 (2020). https://doi.org/10.1134/S106377452002008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377452002008X

Navigation