Skip to main content
Log in

Lagrangian Description of Three-Dimensional Viscous Flows at Large Reynolds Numbers

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Boundary layer theory is used to show that, at large Reynolds numbers, the three-dimensional Navier–Stokes equations can be rewritten in a form with diffusion velocity that was previously known for the cases of two-dimensional and axisymmetric flows. Relying on this hypothesis, a closed system of equations that is a development of a similar model for the indicated special cases is derived to describe fluid flows in the Lagrangian approach. Simultaneously, a number of mathematical issues are investigated. The existence of an integral representation for the velocity field with integrals with respect to Lagrangian coordinates is proved by analyzing the equations of motion of selected Lagrangian particles and applying the theory of ordinary differential equations with parameters. An equation describing the vorticity flux from the body surface is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. S. M. Belotserkovskii and M. I. Nisht, Separated and Nonseparated Inviscid Flows past Thin Wings (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  2. V. A. Aparinov, S. M. Belotserkovskii, I. K. Lifanov, and A. A. Mikhailov, “Calculation of the non-stationary aerodynamic characteristics of a body in the case of separated flow,” USSR Comput. Math. Math. Phys. 28 (5), 182–187 (1988).

    Article  Google Scholar 

  3. I. K. Lifanov, Singular Integral Equations and Discrete Vortices (Yanus, Moscow, 1995; VSP, Utrecht, 1996).

  4. J. Katz and A. Plotkin, Low-Speed Aerodynamics (Cambridge Univ. Press, Cambridge, 2001).

    Book  Google Scholar 

  5. V. A. Gutnikov, I. K. Lifanov, and A. V. Setukha, “Simulation of the aerodynamics of buildings and structures by means of the closed vortex loop method,” Fluid Dyn. 41 (4), 555–567 (2006).

    Article  Google Scholar 

  6. Y. Ogami and T. Akamatsu, “Viscous flow simulation using the discrete vortex model—the diffusion velocity method,” Comput. Fluids 19 (3–4), 433–441 (1991).

    Article  Google Scholar 

  7. P. Koumoutsakos, A. Leonard, and F. Pépin, “Boundary conditions for viscous vortex methods,” J. Comput. Phys. 113 (1), 52–61 (1994).

    Article  MathSciNet  Google Scholar 

  8. G.-H. Cottet and P. Koumoutsakos, Vortex Methods: Theory and Practice (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

  9. P. Koumoutsakos, “Multiscale flow simulations using particles,” Annu. Rev. Fluid Mech. 37, 457–487 (2005).

    Article  MathSciNet  Google Scholar 

  10. I. K. Marchevsky and G. A. Shcheglov, “3D Vortex structures dynamics simulation using vortex fragmentons,” ECCOMAS 2012, e-Book Full Papers (Vienna, 2012), pp. 5716–5735.

  11. G. A. Shcheglov and S. A. Dergachev, “Hydrodynamic loads simulation for 3D bluff bodies by using the vortex loops based modification of the vortex particle method,” 5th International Conference on Particle-Based Methods—Fundamentals and Applications, PARTICLES 2017 (2017), pp. 725–731. http://www.eccomas.org/vpage/1/14/2017.

  12. G. Ya. Dynnikova, “Vortex motion in two-dimensional viscous fluid flows,” Fluid Dyn. 38 (5), 670–678 (2003).

    Article  MathSciNet  Google Scholar 

  13. G. Ya. Dynnikova, “The Lagrangian approach to solving the time-dependent Navier–Stokes equations,” Dokl. Phys. 49 (11), 648–652 (2004).

    Article  MathSciNet  Google Scholar 

  14. V. N. Golubkin and G. B. Sizykh, “Some general properties of plane-parallel viscous flows,” Fluid Dyn. 22 (3), 479–481 (1987).

    Article  Google Scholar 

  15. H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1968).

    MATH  Google Scholar 

  16. L. I. Sedov, A Course in Continuum Mechanics (Nauka, Moscow, 1970; Wolters-Noordhoff, Groningen, 1971/1972), Vol. 2.

  17. L. S. Pontryagin, Ordinary Differential Equations (Addison-Wesley, Reading, Mass., 1962; Nauka, Moscow, 1974).

  18. G. E. Mase, Theory and Problems of Continuum Mechanics (McGraw-Hill, New York, 1970).

    Google Scholar 

  19. V. A. Zorich, Mathematical Analysis (FAZIS; Moscow, 1997), Part 1 [in Russian]

  20. J. C. Wu and J. F. Thompson, “Numerical solutions of time-dependent incompressible Navier–Stokes equations using an integro-differential formulation,” Comput. Fluids 1 (2), 197–215 (1973).

    Article  Google Scholar 

  21. S. N. Kempka, M. W. Glass, J. S. Peery, J. H. Strickland, and M. S. Ingber, Accuracy Considerations for Implementing Velocity Boundary Conditions in Vorticity Formulations, Sandia Report (1996). https://doi.org/10.2172/242701

  22. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1976; Dover, New York, 1999).

  23. I. G. Petrovski, Ordinary Differential Equations (Prentice Hall, Englewood Cliffs, N.J., 1966; Nauka, Moscow, 1984).

  24. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory (Wiley, New York, 1984).

    MATH  Google Scholar 

  25. E. V. Zakharov, S. G. Ryzhakov, and A. V. Setukha, “Numerical solution of 3D problems of electromagnetic wave diffraction on a system of ideally conducting surfaces by the method of hypersingular integral equations,” Differ. Equations 50 (9), 1240–1251 (2014).

    Article  MathSciNet  Google Scholar 

  26. S. G. Ryzhakov and A. V. Setukha, “On the convergence of a numerical method for a hypersingular integral equation on a closed surface,” Differ. Equations 46 (9), 1353–1363 (2010).

    Article  MathSciNet  Google Scholar 

  27. L. I. Sedov, A Course in Continuum Mechanics (Nauka, Moscow, 1970; Wolters-Noordhoff, Groningen, 1971), Vol. 1.

  28. G. M. Vainikko, I. K. Lifanov, and L. N. Poltavskii, Hypersingular Integral Equations and Their Applications (Yanus-K, Moscow, 2001; Chapman & Hall/CRC, London, 2004).

  29. A. V. Setukha and A. V. Semenova, “Numerical solution of a surface hypersingular integral equation by piecewise linear approximation and collocation methods,” Comput. Math. Math. Phys. 59 (6), 942–957 (2019).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Setukha.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setukha, A.V. Lagrangian Description of Three-Dimensional Viscous Flows at Large Reynolds Numbers. Comput. Math. and Math. Phys. 60, 302–326 (2020). https://doi.org/10.1134/S0965542520020116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520020116

Keywords:

Navigation