Skip to main content
Log in

An Approach to Time Integration of the Navier–Stokes Equations

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

An approach to the time integration of the Navier–Stokes equations for a compressible heat-conducting gas is developed. According to this approach, the solution algorithm is split into a convective and a diffusion stage. The convective stage represents an explicit Godunov-type scheme. The diffusion stage is addressed using the Chebyshev explicit iterative scheme. The resulting scheme ensures the fulfillment of the fundamental conservation laws at the difference level, and its algorithmic structure is well suited for parallelization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. T. Zhukov, Yu. G. Rykov, and O. B. Feodoritova, Preprint No. 183, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2018).

  2. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Nauka, Moscow, 1987; Begell House, New York, 1996).

  3. I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben’, and T. K. Kozubskaya, “Parallel software package NOISEtte for large-scale computation of aerodynamic and aeroacoustic applications,” Vychisl. Metody Program. 13 (3), 110–125 (2012).

    Google Scholar 

  4. G. I. Marchuk, Splitting Methods (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  5. G. Strang, “On the construction and comparison of difference schemes,” SIAM J. Numer. Anal. 5 (2), 506–517 (1968).

    Article  MathSciNet  Google Scholar 

  6. A. Chertock and A. Kurganov, “On splitting-based numerical methods for convection-diffusion equations,” in Numerical Methods for Balance Laws (Quaderni di Matematica, Dept. Math., Seconda Univ. Napoli, Caserta, 2009), No. 24, pp. 303–343.

  7. V. T. Zhukov, “On explicit methods for the time integration of parabolic equations,” Math. Model. Comput. Simul. 3 (3), 311–332 (2010).

    Article  Google Scholar 

  8. V. T. Zhukov, N. D. Novikova, and O. B. Feodoritova, “On the solution of evolution equations based on multigrid and explicit iterative methods,” Comput. Math. Math. Phys. 55 (8), 1276–1289 (2015).

    Article  MathSciNet  Google Scholar 

  9. I. M. Gelfand and O. V. Lokutsievskii, “On difference schemes for solving the heat equation,” in Introduction to the Theory of Difference Schemes by S. K. Godunov and V. S. Ryaben’kii (Fizmatgiz, Moscow, 1962) [in Russian].

  10. V. O. Lokutsievskii and O. V. Lokutsievskii, “On the numerical solution of boundary value problems for parabolic equations,” Dokl. Akad. Nauk SSSR 291 (3), 540–544 (1986).

    MathSciNet  Google Scholar 

  11. V. T. Zhukov, A. V. Zabrodin, and O. B. Feodoritova, “A method of solving the two-dimensional equations of the dynamics of a heat-conducting gas in regions of complicated shape,” Comput. Math. Math. Phys. 33 (8), 1099–1108 (1993).

    MathSciNet  MATH  Google Scholar 

  12. F. R. Gantmacher, The Theory of Matrices (Chelsea, New York, 1959; Nauka, Moscow, 1966).

  13. A. A. Samarskii and E. S. Nikolaev, Solution Methods for Grid Equations (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  14. V. I. Lebedev and S. A. Finogenov, “The order of choice of iteration parameters in the cyclic Chebyshev iteration method,” USSR Comput. Math. Math. Phys. 11, (2) 155–170 (1971).

    Article  Google Scholar 

  15. L. A. Lyusternik, “On difference approximations of the Laplace operator,” Usp. Mat. Nauk 9 (2), 3–66 (1954).

    MathSciNet  Google Scholar 

  16. R. P. Fedorenko, Introduction to Computational Physics, 2nd revised and supplemented ed. (Intellekt, Dolgoprudnyi, 2008) [in Russian].

  17. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1977; Dover, New York, 2011).

  18. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (Springer-Verlag, Berlin, 1996).

    Book  Google Scholar 

  19. V. I. Lebedev, “How to solve stiff systems of differential equations by explicit methods,” Computational Processes and Systems, Ed. by G. I. Marchuk (Nauka, Moscow, 1991), Vol. 8, pp. 237–291 [in Russian].

    Google Scholar 

  20. J. G. Verwer, B. P. Sommeijer, and L. F. Hundsdorfe, “RKC time-stepping for advection-diffusion-reaction problems,” J. Comput. Phys. 201 (1), 61–79 (2004).

    Article  MathSciNet  Google Scholar 

  21. A. S. Shvedov and V. T. Zhukov, “Explicit iterative difference schemes for parabolic equations,” Russ. J. Numer. Anal. Math. Model. 13 (2), 133–148 (1998).

    Article  MathSciNet  Google Scholar 

  22. P. J. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque, 1976).

    MATH  Google Scholar 

  23. Numerical Solution of Multidimensional Problems in Gas Dynamics, Ed. by S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  24. V. V. Vlasenko, Doctoral Dissertation in Physics and Mathematics (Central Aerodynamic Inst., Zhukovskii, 2017).

  25. A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving ConvectionDiffusion Problems (URSS, Moscow, 1999) [in Russian].

    Google Scholar 

  26. V. I. Polezhaev, Candidate’s Dissertation in Engineering (Research Inst. of Precision Instruments, Moscow, 1967).

  27. V. A. Bashkin and I. V. Egorov, Numerical Study of Exterior and Interior Aerodynamic Problems (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.V. Gorobets and P.V. Bakhvalov for their help with this work and for valuable comments.

Funding

This work was supported by the Russian Science Foundation (project no. 17-71-30014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. T. Zhukov, N. D. Novikova or O. B. Feodoritova.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, V.T., Novikova, N.D. & Feodoritova, O.B. An Approach to Time Integration of the Navier–Stokes Equations. Comput. Math. and Math. Phys. 60, 272–285 (2020). https://doi.org/10.1134/S0965542520020128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520020128

Keywords:

Navigation