Skip to main content
Log in

Computational Aspects of Irreducible Polynomials

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

We present results on testing the computation of bounds for polynomial divisors and give estimates for their heights. There are also given results on the irreducibility of polynomials and some methods for constructing irreducible polynomials. They are based on properties of Newton’s polygon.  Finally we give applications to the irreducibility of univariate polynomials

$$F(X) = \sum\limits_{i = 0}^d \,{{a}_{i}}{{X}^{{d - i}}}$$

over a discrete valuation domain. We give applications to bivariate polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. E. Beauzamy, P. Bombieri, and H. Enflo, “Montgomery: Products of polynomials in many variables,” J. Number Theory 36, 219–245 (1990).

    Article  MathSciNet  Google Scholar 

  2. B. Beauzamy, “Products of polynomials and a priori estimates for coefficients in polynomial decompositions: A sharp result,” J. Symb. Comput. 13, 463–472 (1992).

    Article  MathSciNet  Google Scholar 

  3. S. Bhatia and S. K. Khanduja, “Difference polynomials and their generalizations,” Mathematika 48, 293–299 (2001).

    Article  MathSciNet  Google Scholar 

  4. A. Bishnoi, S. K. Khanduja, and K. Sudesh, “Some extensions and applications of the Eisenstein irreducibility criterion,” Dev. Math. 18, 189–197 (2010).

    MathSciNet  MATH  Google Scholar 

  5. N. C. Bonciocat, “On an irreducibility criterion of Perron for multivariate polynomials,” Bull. Math. Soc. Sci. Math. Roum. 53 (101), 213–217 (2010).

    MathSciNet  MATH  Google Scholar 

  6. N. C. Bonciocat, “Schönemann–Eisenstein–Dumas-type irreducibility conditions that use arbitrarily many prime numbers,” Commun. Algebra 43, 3102–3122 (2015).

    Article  MathSciNet  Google Scholar 

  7. N. C. Bonciocat, Y. Bugeaud, M. Cipu, and M. Mignotte, “Irreducibility criteria for sums of two relatively prime polynomials,” Int. J. Number Theory 9, 1529–1539 (2013).

    Article  MathSciNet  Google Scholar 

  8. G. Dumas, “Sur quelques cas d’irréducibilité des polynômes à coefficients rationnels,” J. Math. Pures Appl. 12, 191–258 (1906).

    MATH  Google Scholar 

  9. G. Eisenstein, “Über die Irreductibilität und einige andere Eigenschaften der Gleichung, von welcher die Theilung der ganzen Lemniscate abhängt,” J. Reine Angew. Math. 39, 160–182 (1850).

    MathSciNet  Google Scholar 

  10. M. Mignotte, “An inequality on the greatest roots of a polynomial,” Elem. Math. 46, 86–87 (1991).

    MathSciNet  MATH  Google Scholar 

  11. M. Mignotte and P. Glesser, “On the smallest divisor of a polynomial,” J. Symb. Comput. 17, 277–282 (1994).

    Article  MathSciNet  Google Scholar 

  12. M. Mignotte, D. Ştefănescu, Polynomials—An Algorithmic Approach (Springer-Verlag, 1999).

    MATH  Google Scholar 

  13. M. Mignotte and D. Ştefănescu, “La première mèthode gènèrale de factorisation des polynômes: Autour d’un mḿoire de F. T. Schubert,” Rev. d’Hist. Math. 7, 101–123 (2001).

    MATH  Google Scholar 

  14. L. Panaitopol and D. Ştefănescu, “On the generalized difference polynomials,” Pac. J. Math. 143, 341–348 (1990).

    Article  MathSciNet  Google Scholar 

  15. T. Schönemann, “Von denjenigen Moduln, welche Potenzen von Primzahlen sind,” J. Reine Angew. Math. 32, 93–105 (1846).

    MathSciNet  Google Scholar 

  16. D. Ştefănescu, “Applications of the Newton index to the construction of irreducible polynomials,” in CASC'2014,Lecture Notes in Computer Science, Ed. by V. Gerdt, W. Koepf, W. Mayr, and E. Vorozhtsov (Springer, Berlin, 2014), Vol. 8660, pp. 460–471.

    Google Scholar 

  17. P. S. Wang, “Parallel univariate polynomial factorization on shared–memory multiprocessors,” Proceedings of ISSAC’90 (1990), pp. 145–151.

    Article  Google Scholar 

  18. S. H. Weintraub, “A mild generalization of Eisenstein’s criterion, Proc. Am. Math. Soc. 141, 1159–1160 (2013).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ştefănescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ştefănescu, D. Computational Aspects of Irreducible Polynomials. Comput. Math. and Math. Phys. 60, 128–133 (2020). https://doi.org/10.1134/S0965542520010133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520010133

Keywords:

Navigation