Skip to main content
Log in

Flow around a Liquid Sphere Filled with a Non-Newtonian Liquid and Placed into a Porous Medium

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Flow around a Reiner–Rivlin non-Newtonian liquid particle, which is surrounded with a Newtonian liquid shell and placed into a permeable medium, is studied. This formulation of the problem is typical for, e.g., studying the motion of an oil droplet surrounded with an aqueous medium (oil-in-water emulsion) in a porous collector under the action of an external pressure drop. An analogous problem is encountered when lymph penetrates into human or animal tissues. The flows inside of the permeable layer, in the region between the Reiner–Rivlin liquid and a porous medium, and inside of the spherical region are described by the Brinkman, Stokes, and Reiner–Rivlin equations, respectively. The general solution for the stream function in the external porous region is written in terms of the modified Bessel function and Gegenbauer polynomials. For the Reiner–Rivlin liquid sphere, the solution is found by expanding the stream function into a power series in terms of small dimensionless parameter S. The boundary problem is solved by conjugating the boundary conditions for all regions. The drag force applied to the Reiner–Rivlin liquid particle placed into the permeable medium is determined. The effects of permeability parameter α, viscosity ratio λ, and dimensionless parameter S on the drag coefficient are studied. Corresponding dependences are represented graphically and discussed. Known particular cases are described using passages to the limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Reiner, M., Rheology, Moscow: Nauka, 1965.

    Google Scholar 

  2. Rivlin, R.S. and Ericksen, J.L., J. Ration. Mech. Anal., 1955, vol. 4, p. 323.

    Google Scholar 

  3. Malinin, N.I., Kolloidn. Zh., 1960, vol. 22, p. 201.

    Google Scholar 

  4. Darcy, H., Les Fontaines Publiques De La Ville De Dijion, Paris: Victor Dalmont, 1856.

    Google Scholar 

  5. Brinkman, H., Appl.Sci. Res. A, 1947, p. 27.

    Google Scholar 

  6. Tam, C., J. Fluid Mech., 1969, vol. 38, p. 537.

    Article  Google Scholar 

  7. Lundgren, T., J. Fluid Mech., 1972, vol. 51, p. 273.

    Article  Google Scholar 

  8. Pop, I. and Cheng, P., Chem. Eng. Sci., 1992, vol. 30, p. 257.

    CAS  Google Scholar 

  9. Qin, Y. and Kaloni, P., J. Eng. Math., 1988, vol. 177, p. .

  10. Perepelkin, P.V., Starov, V.M., and Filippov, A.N., Kolloidn. Zh., 1992, vol. 54, p. 139.

    CAS  Google Scholar 

  11. Vasin, S.I., Starov, V.M., and Filippov, A.N., Colloid J., 1996, vol. 58, p. 291.

    CAS  Google Scholar 

  12. Barman, B., Indian J. Pure Appl. Math., 1996, vol. 27, p. 1244.

    Google Scholar 

  13. Rudraiah, N. and Shiva Kumara, I., Abstracts of Papers, Seventh Asian Congr. on Fluid Mechanics, 1997, p. 565.

  14. Srinivasacharya, D. and Murthy, J., C. R. Mecanique, 2002, vol. 330, p. 417.

    Article  Google Scholar 

  15. Vasin, S.I., Filippov, A.N., and Starov, V.M., Adv. Colloid Interface Sci., 2008, vol. 139, p. 83.

    Article  CAS  Google Scholar 

  16. Deo, S. and Shukla, P., Adv. Theor. Appl. Mech., 2010, vol. 3, p. 45.

    CAS  Google Scholar 

  17. Deo, S. and Gupta, B., J. Por. Media, 2010, vol. 13, p. 1009.

    Article  Google Scholar 

  18. Jaiswal, B.R. and Gupta, B.R., Trans.Por. Media, 2015, vol. 106, p. 907.

    Article  Google Scholar 

  19. Jaiswal, B.R., Appl. Math. Comput., vol. 316, p. 488.

  20. Saad, E.I., Meccanica, 2012, vol. 47, p. 2055.

    Article  Google Scholar 

  21. Khanukaeva, D.Yu. and Filippov, A.N., Colloid J., 2018, vol. 80, p. 14.

    Article  CAS  Google Scholar 

  22. Khanukaeva, D.Yu. and Filippov, A.N., Proc. Gubkin Russian State Univ. Oil and Gas, Moscow: 2014, no. 3(276), p. 245.

  23. Zlatanovski, T., Q. J. Mech. Appl. Math., 1999, vol. 52, p. 111.

    Article  Google Scholar 

  24. Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics, Hague: Martinus Nijhoff, 1983.

  25. Ramkissoon, H., J. Appl. Math. Mech., 1989, vol. 69, p. 259.

    Google Scholar 

  26. Abramowitz, M. and Stegun, I., in Handbook of Mathematical Functions, New York: Dover, 1970.

    Google Scholar 

  27. Ganapathy, R., Z. Angew. Math. Mech., 1997, vol. 77, p. 871.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Filippov.

Ethics declarations

The authors declare that they have no conflict of in-terest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasamy Selvi, Shukla, P. & Filippov, A.N. Flow around a Liquid Sphere Filled with a Non-Newtonian Liquid and Placed into a Porous Medium. Colloid J 82, 152–160 (2020). https://doi.org/10.1134/S1061933X20010123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20010123

Navigation