Skip to main content
Log in

Synthesis and Characterization of Silver Nanoparticles in Reverse Micelles of Nonionic Surfactants and in Their Mixed Micelles with AOT

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Stable silver nanoparticles have been obtained in reverse micelles of known and available nonionic surfactants, sorbitan monooleate (Span 80) and tetraethoxylated dodecanol and p-nonylphenol (Brij 30 and Tergitol NP-4, respectively), in n-decane. The obtained nanoparticles have been characterized using a number of physicochemical methods. The stability, hydrodynamic diameter, and electrokinetic potential of the nanoparticles have been studied as depending on the amounts of added water; chloroform; and an anionic surfactant, sodium bis(2-ethylhexyl)sulfosuccinate (AOT). It has been shown that, for different surfactants, AOT should be introduced in different ways to provide the nanoparticles with the electrokinetic potential values sufficient for enhancing their stability and ensuring the possibility of concentrating them by nonaqueous electrophoresis. In the case of Brij 30, it is preferable to introduce AOT after the synthesis as a “charging additive,” while, in the case of Tergitol NP-4, it should be added as a cosurfactant at the stage of the synthesis. The nanoparticles synthesized in Span 80 micelles have a rather high electrokinetic potential even in the absence of the additives. In this case, the use of AOT as a cosurfactant decreases the electrokinetic potential of the nanoparticles, while, being added after the synthesis, it increases the potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Wu, W., Nanoscale, 2017, vol. 9, p. 7342.

    Article  CAS  Google Scholar 

  2. Kamyshny, A. and Magdassi, S., Small, 2014, vol. 10, p. 3515.

    Article  CAS  Google Scholar 

  3. Shin, D.-H., Woo, S., Yem, H., Cha, M., Cho, S., Kang, M., Jeong, S., Kim, Y., Kang, K., and Piao, Y., ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 3312.

    Article  CAS  Google Scholar 

  4. Vassem, M., McKerricher, G., and Shamim, A., ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 177.

    Article  Google Scholar 

  5. Jason, N.J., Shen, W., and Cheng, W., ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 16760.

    Article  CAS  Google Scholar 

  6. Lee, K.J., Jun, B.H., Kim, T.H., and Joung, J., Nanotechnology, 2006, vol. 17, p. 2424.

    Article  CAS  Google Scholar 

  7. Shinde, S.R., Banpurkar, A.G., Adhi, K.P., Limaye, A.V., Ogale, S.B., Date, S.K., and Marest, G., Mod. Phys. Lett. B, 1996, vol. 10, p. 1517.

    Article  CAS  Google Scholar 

  8. Begin-Colin, S., Wolf, F., and Le Caer, G., J. Phys. III, 1997, vol. 7, p. 473.

    CAS  Google Scholar 

  9. Ananthapadmanabhan, P.V., Sreekumar, K.P., Venkatramani, N., Sinha, P.K., and Taylor, P.R., J. Alloys Compd., 1996, vol. 244, p. 70.

    Article  Google Scholar 

  10. Lu, J., Yang, H., Yu, S., and Zou, G., Mater. Chem. Phys., 1996, vol. 45, p. 197.

    Article  CAS  Google Scholar 

  11. Pileni, M.P., J. Phys. Chem., 1993, vol. 97, p. 6961.

    Article  CAS  Google Scholar 

  12. Eastoe, J., Hollamby, M.J., and Hudson, L., Adv. Colloid Interface Sci., 2006, vols. 128–130, p. 5.

  13. Zhang, W., Qiao, X., Chen, J., and Wang, H., J. Colloid Interface Sci., 2006, vol. 302, p. 370.

    Article  CAS  Google Scholar 

  14. Popovetskiy, P.S., Shaparenko, N.O., Arymbaeva, A.T., and Bulavchenko, A.I., Colloid J., 2016, vol. 78, p. 485.

    Article  CAS  Google Scholar 

  15. Sainis, S.K., Merrill, J.W., and Duffresne, E.R., Langmuir, 2008, vol. 24, p. 13334.

    Article  CAS  Google Scholar 

  16. Sainis, S.K., Germain, V., Mejean, C.O., and Duffresne, E.R., Langmuir, 2008, vol. 24, p. 1160.

    Article  CAS  Google Scholar 

  17. Popovetskiy, P.S., Bulavchenko, A.I., and Manakov, A.Yu., Opt. Zh., 2011, vol. 78, no. 7, p. 67.

    Google Scholar 

  18. Bulavchenko, A.I. and Pletnev, D.N., J. Phys. Chem. C, 2008, vol. 112, p. 16365.

    Article  CAS  Google Scholar 

  19. Bulavchenko, A.I. and Popovetskiy, P.S., Langmuir, 2010, vol. 26, p. 736.

    Article  CAS  Google Scholar 

  20. O’Brien, R.W. and White, L.R., J. Chem. Soc., Faraday Trans., 1978, vol. 74, p. 1607.

    Article  Google Scholar 

  21. Delgado, A.V., Gonzalez-Caballero, F., Hunter, R.J., Koopal, L.K., and Lyklema, J., J. Colloid Interface Sci., 2007, vol. 309, p. 194.

    Article  CAS  Google Scholar 

  22. Morrison, I.D., Colloids Surf. A, 2008, vol. 71, p. 1.

    Article  Google Scholar 

  23. Popovetskiy, P.S., Bulavchenko, A.I., Demidova, M.G., and Podlipskaya, T.Yu., Colloid J., 2015, vol. 77, p. 58.

    Article  CAS  Google Scholar 

  24. Popovetskiy, P.S. and Beketova, D.I., Colloids Surf. A, 2019, vol. 568, p. 51.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-33-00064 mol-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Popovetskiy.

Ethics declarations

The author declare that he have no conflict of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popovetskiy, P.S. Synthesis and Characterization of Silver Nanoparticles in Reverse Micelles of Nonionic Surfactants and in Their Mixed Micelles with AOT. Colloid J 82, 144–151 (2020). https://doi.org/10.1134/S1061933X2002009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X2002009X

Navigation