Skip to main content
Log in

The Effect of the Anisotropic Nanoparticles Nature on the Properties of Ring Deposits Resulting from Evaporation of Droplets of Their Dispersions

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A comparative analysis has been performed for the structure of ring deposits resulting from the evaporation of droplets of aqueous dispersions of gold nanorods and composite nanoparticles with a gold core/organosilica shell structure based thereon. The nature of the particles has been shown to have a key effect on the character of their packing near a three-phase contact line. The study of the conductivity of the ring deposits obtained from dispersions of the composite particles has shown that it is realized via over-barrier electron emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Mass concentration CAu of gold is also presented to make the comparison more convenient.

REFERENCES

  1. Ma, H. and Hao, J., Chem. Soc. Rev., 2011, vol. 40, p. 5457.

    Article  CAS  Google Scholar 

  2. Lotito, V. and Zambelli, T., Adv. Colloid Interface Sci., 2017, vol. 246, p. 217.

    Article  CAS  Google Scholar 

  3. Mampallil, D. and Eral, H.B., Adv. Colloid Interface Sci., 2018, vol. 252, p. 38.

    Article  CAS  Google Scholar 

  4. Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., and Witten, T.A., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, vol. 62, p. 756.

    Article  CAS  Google Scholar 

  5. Bhardwaj, R., Fang, X., and Attinger, D., New J. Phys., 2009, vol. 11, p. 075020.

    Article  Google Scholar 

  6. Molchanov, S.P., Roldughin, V.I., and Chernova-Kharaeva, I.A., Colloid J., 2015, vol. 77, p. 761.

    Article  CAS  Google Scholar 

  7. Molchanov, S.P., Roldughin, V.I., and Chernova-Kharaeva, I.A., Colloid J., 2017, vol. 79, p. 234.

    Article  CAS  Google Scholar 

  8. Parsa, M., Harmand, S., and Sefiane, K., Adv. Colloid Interface Sci., 2018, vol. 254, p. 22.

    Article  CAS  Google Scholar 

  9. Dugyala, V.R. and Basavaraj, M.G., Langmuir, 2014, vol. 30, p. 8680.

    Article  CAS  Google Scholar 

  10. Dugyala, V.R. and Basavaraj, M.G., J. Phys. Chem. B, 2015, vol. 119, p. 3860.

    Article  CAS  Google Scholar 

  11. Kim, D.-O., Pack, M., Hu, H., Kim, H., and Sun, Y., Langmuir, 2016, vol. 32, p. 11899.

    Article  CAS  Google Scholar 

  12. Lebovka, N.I., Vygornitskii, N.V., Gigiberiya, V.A., and Tarasevich, Yu.Yu., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2016, vol. 94, p. 062803.

    Article  Google Scholar 

  13. Ye, X., Fei, L., Lu, L., and Li, C., Eur. Phys. J. E, 2019, vol. 42, p. 17.

    Article  Google Scholar 

  14. Kim, Y.-K., Na, H.-K., Ham, S., and Min, D.-H., RSC Adv., 2014, vol. 4, p. 50091.

    Article  CAS  Google Scholar 

  15. Vysotskii, V.V., Dement’eva, O.V., Salavatov, N.A., Zaitseva, A.V., Kartseva, M.E., Sapkov, I.V., and Rudoy, V.M., Colloid J., 2018, vol. 80, p. 615.

    Article  CAS  Google Scholar 

  16. Salavatov, N.A., Dement’eva, O.V., Mikhailichenko, A.I., and Rudoy, V.M., Colloid J., 2018, vol. 80, p. 541.

    Article  CAS  Google Scholar 

  17. Molchanov, S.P., Roldughin, V.I., Chernova-Kharaeva, I.A., and Yurasik, G.A., Colloid J., 2016, vol. 78, p. 633.

    Article  CAS  Google Scholar 

  18. Molchanov, S.P., Roldughin, V.I., Chernova-Kharaeva, I.A., and Senchikhin, I.N., Colloid J., 2017, vol. 79, p. 515.

    Article  CAS  Google Scholar 

  19. Bolhuis, P. and Frenkel, D., J. Chem. Phys., 1997, vol. 106, p. 666.

    Article  CAS  Google Scholar 

  20. Lu, Z., Sun, L., Nguyen, K., Gao, C., and Yin, Y., Langmuir, 2011, vol. 27, p. 3372.

    Article  CAS  Google Scholar 

  21. Vysotskii, V.I., Roldughin, V.I., Uryupina, O.Ya., and Zaitseva, A.V., Colloid J., 2011, vol. 73, p. 176.

    Article  CAS  Google Scholar 

  22. Kao, K. and Hwang, W., Electrical Transport in Solids, Oxford (U.K.): Pergamon, 1981, Vol. 2.

    Google Scholar 

  23. Sze, S., Physics of Semiconductor Devices, New York: Wiley, 1981, Vol. 1.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful for the possibility to use the equipment of the Center for Collective Use of the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, and the Training and Methodological Center of Lithography and Microscopy of Moscow State University.

Funding

This work was carried out according to an order of the Ministry of Science and Higher Education of the Russian Federation and supported by Program for Basic Research of the Presidium of the Russian Academy of Sciences no. 14.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Vysotskii or O. V. Dement’eva.

Ethics declarations

The authors declare that they have no conflict of int-erest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vysotskii, V.V., Dement’eva, O.V., Salavatov, N.A. et al. The Effect of the Anisotropic Nanoparticles Nature on the Properties of Ring Deposits Resulting from Evaporation of Droplets of Their Dispersions. Colloid J 82, 100–107 (2020). https://doi.org/10.1134/S1061933X20020155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20020155

Navigation