Skip to main content
Log in

Towards a geometric approach to Strassen’s asymptotic rank conjecture

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

We make a first geometric study of three varieties in \(\mathbb {C}^m\otimes \mathbb {C}^m\otimes \mathbb {C}^m\) (for each m), including the Zariski closure of the set of tight tensors, the tensors with continuous regular symmetry. Our motivation is to develop a geometric framework for Strassen’s asymptotic rank conjecture that the asymptotic rank of any tight tensor is minimal. In particular, we determine the dimension of the set of tight tensors. We prove that this dimension equals the dimension of the set of oblique tensors, a less restrictive class introduced by Strassen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Blasiak, J., Church, T., Cohn, H., Grochow, J.A., Naslund, E., Sawin, W.F., Umans, C.: On cap sets and the group-theoretic approach to matrix multiplication. Discrete Anal. Paper No. 3, 27 (2017)

  2. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic complexity theory, Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin (1997). With the collaboration of Thomas Lickteig

    MATH  Google Scholar 

  3. Bläser, M.: Fast matrix multiplication. Theory of Computing, Graduate Surveys 5, 1–60 (2013)

    Google Scholar 

  4. Brion, M.: Sur l’image de l’application moment, Séminaire d’Algèbre Paul Dubreil et Marie-Paule Malliavin, vol. 1296, pp. 177–192. Springer, Berlin (1987)

    Book  Google Scholar 

  5. Conner, A., Gesmundo, F., Landsberg, J.M., Ventura, E.: Kronecker powers of tensors and Strassen’s laser method. arXiv:1909.04785 (2019)

  6. Christandl, M., Vrana, P., Zuiddam, J.: Universal points in the asymptotic spectrum of tensors. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing—STOC’18, pp. 289–296. ACM (2018)

  7. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1990)

    Article  MathSciNet  Google Scholar 

  8. de Groote, H .F.: On varieties of optimal algorithms for the computation of bilinear mappings I. The isotropy group of a bilinear mapping. Theor. Comput. Sci. 7(1), 1–24 (1978)

    Article  MathSciNet  Google Scholar 

  9. Franz, M.: Moment polytopes of projective \(G\)-varieties and tensor products of symmetric group representations. J. Lie Theory 12(2), 539–549 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Landsberg, J.M.: Geometry and Complexity Theory. Cambridge Studies in Advanced Mathematics, vol. 169. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  11. Landsberg, J.M.: Tensors: asymptotic geometry and developments 2016–2018. In: CBMS Regional Conference Series in Mathematics, vol. 132. AMS (2019)

  12. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC’14, pp. 296–303. ACM (2014)

  13. Landsberg, J.M., Michałek, M.: Towards finding hay in a haystack: explicit tensors of border rank greater than \(2.02 m\) in \({\mathbb{C}}^m\otimes {\mathbb{C}}^m\otimes \mathbb{C}^m\). arXiv:1912.11927 (2019)

  14. Landsberg, J.M., Michałek, M.: Abelian tensors. J. Math. Pures Appl. 108(3), 333–371 (2017)

    Article  MathSciNet  Google Scholar 

  15. Landsberg, J.M., Michałek, M.: A \(2n^2 - \log (n) - 1\) lower bound for the border rank of matrix multiplication. Int Math Res Not. IMNR 15, 4722–4733 (2018)

    Article  Google Scholar 

  16. Ness, L.: A stratification of the null cone via the moment map. Am. J. Math. 106(6), 1281–1329 (1984). With an appendix by David Mumford

    Article  MathSciNet  Google Scholar 

  17. Proctor, R.A.: Representations of sl(2, C) on posets and the Sperner property. SIAM J. Algebr. Discrete Methods 3(2), 275–280 (1982)

    Article  Google Scholar 

  18. Shafarevich, I .R.: Basic algebraic geometry. 1—Varieties in projective space, 3rd edn. Springer, Berlin (1994)

    Book  Google Scholar 

  19. Sawin, W.F., Tao, T.: Notes on the “slice rank” of tensors. https://terrytao.wordpress.com/ (2016). Accessed 1 July 2019

  20. Stothers, A.: On the complexity of matrix multiplication. Ph.D. thesis, University of Edinburgh (2010)

  21. Strassen, V.: The asymptotic spectrum of tensors and the exponent of matrix multiplication. In: 27th Annual Symposium on Foundations of Computer Science, pp. 49–54. IEEE (1986)

  22. Strassen, V.: Relative bilinear complexity and matrix multiplication. J. Reine Angew. Math. 375(376), 406–443 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Strassen, V.: The asymptotic spectrum of tensors. J. Reine Angew. Math. 384, 102–152 (1988)

    MathSciNet  MATH  Google Scholar 

  24. Strassen, V.: Degeneration and complexity of bilinear maps: some asymptotic spectra. J. Reine Angew. Math. 413, 127–180 (1991)

    MathSciNet  MATH  Google Scholar 

  25. Strassen, V.: Algebra and complexity. In: First European Congress of Mathematics, Paris, 6–10 July 1992, pp. 429–446. Springer (1994)

  26. Strassen, V.: Komplexität und Geometrie bilinearer Abbildungen. Jahresber. Deutsch. Math.-Verein. 107(1), 3–31 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Tao, T.: A symmetric formulation of the Croot–Lev–Pach–Ellenberg–Gijswijt capset bound. https://terrytao.wordpress.com/ (2016). Accessed 1 July 2019

  28. Williams, V.V.: Multiplying matrices faster than Coppersmith–Winograd. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of computing—STOC’12, pp. 887–898. ACM (2012)

Download references

Acknowledgements

We thank the anonymous referees for their valuable comments on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulvio Gesmundo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Landsberg is supported by NSF Grants DMS-1405348 and AF-1814254 and by the Grant 346300 for IMPAN from the Simons Foundation and the matching 2015–2019 Polish MNiSW fund as well as a Simons Visiting Professor Grant supplied by the Simons Foundation and by the Mathematisches Forschungsinstitut Oberwolfach. Gesmundo acknowledges financial support from the European Research Council (ERC Grant Agreement No. 337603), the VILLUM FONDEN via the QMATH Centre of Excellence (Grant No. 10059) and the ICERM program in Nonlinear Algebra in Fall 2018 (NSF DMS-1439786). Ventura acknowledges financial support by the Grant 346300 for IMPAN from the Simons Foundation and the matching 2015–2019 Polish MNiSW fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conner, A., Gesmundo, F., Landsberg, J.M. et al. Towards a geometric approach to Strassen’s asymptotic rank conjecture. Collect. Math. 72, 63–86 (2021). https://doi.org/10.1007/s13348-020-00280-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-020-00280-8

Keywords

Mathematics Subject Classification

Navigation