Skip to main content
Log in

Spin Gap in β-TeVO4: a Quantum Monte Carlo Study

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we proposed a two-leg spin ladder model for the description of magnetic properties of the β-TeVO4 compound. Quantum Monte Carlo (QMC) simulation was applied to describe the temperature-dependent magnetic susceptibility data for low temperatures. The two-leg spin ladder model presents a spin gap, and we suggests that β-TeVO4 compound presents such a spin gap also, and therefore, the model proposed here can be experimentally tested by measuring the spin gap of the compound. The susceptibility phase diagram has a rounded peak in the vicinity of T ≈ 12.2 K and obeys Troyer’s law for low temperatures and Curie’s law for high temperatures. We also study the susceptibility diagram in low temperatures and found the spin gap Δ = 8.06 K. The linearization of the equation for susceptibility in low temperatures allows us to obtain the spin gap value, and such a linearization was made with the data from the QMC simulation. In all the results, there is a very good agreement with the experimental data. We also show that the spin gap is null and the susceptibility is proportional to T for low temperatures when relatively high values of the ladders’ coupling is considered. The theoretical results are compared with other studies as well as applied to describe the susceptibility phase diagram of consolidated spin ladder compound, C9H18N2CuBr4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Pregelj, A. Zorko, O. Zaharko, H. Nojiri, H. Berger, L.C. Chapon, D. Arčon, Nature Commun. 6 (2015)

  2. S. Sahling, G. Remenyi, C. Paulsen, P. Monceau, V. Saligrama, C. Marin, A. Revcolevschi, L.P. Regnault, S. Raymond, J.E. Lorenzo, Nat. Phys. 11, 255–260 (2015)

    Article  Google Scholar 

  3. T. Hong, et al., Nature Commun. 8, 15148 (2017)

    Article  ADS  Google Scholar 

  4. T. Hong, et al., Phys. Rev. B. 89(17), 174432 (2014)

    Article  ADS  Google Scholar 

  5. F. Awwadi, et al., Inorg. Chem. 47(20), 9327–9332 (2008)

    Article  Google Scholar 

  6. C.P. Landee, M.M. Turnbull, Eur. J. Inorg. Chem. 2013(13), 2266–2285 (2013)

    Article  Google Scholar 

  7. H. Ryll, K. Kiefer, C. Rüegg, S. Ward, K.W. Krämer, D. Biner, P. Bouillot, E. Coira, T. Giamarchi, C. Kollath, Phys. Rev. B, 144416 (2014)

  8. E. Dagotto, T.M. Rice, Science. 271, 618–623 (1996)

    Article  ADS  Google Scholar 

  9. E. Dagotto, Rep. Prog. Phys. 62, 1525 (1999)

    Article  ADS  Google Scholar 

  10. T. Hakobyan, J.H. Hetherington, M. Roger, Phys. Rev. B. 63(14), 144433 (2001)

    Article  ADS  Google Scholar 

  11. Z.V. Popovicq, C. Petrovic, M. Scepanovic, N. Lazarevic, M. Opacic, M.M. Radonjic, D. Tanaskovic, H. Lei, Phys. Rev. B 91 (2015)

  12. H. Takahashi, A. Sugimoto, Y. Nambu, T. Yamauchi, Y. Hirata, T. Kawakami, M. Avdeev, K. Matsubayashi, F. Du, C. Kawashima, et al., Nat. Mater. 14, 1008–1012 (2015)

    Article  ADS  Google Scholar 

  13. H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, H. Hosono, Nature. 453, 376–378 (2008)

    Article  ADS  Google Scholar 

  14. B.C. Watson, V.N. Kotov, M.W. Meisel, D.W. Hall, G.E. Granroth, W.T. Montfrooij, S.E. Nagler, D.A. Jensen, R. Backov, M.A. Petruska, et al., Phys. Rev. Lett. 86, 5168 (2001)

    Article  ADS  Google Scholar 

  15. I. Bose, Curr Sci. 88, 62–70 (2005)

    Google Scholar 

  16. A.T. Savici, G.E. Granroth, C.L. Broholm, D.M. Pajerowski, C.M. Brown, D.R. Talham, M.W. Meisel, K.P. Schmidt, G.S. Uhrig, S.E. Nagler, Phys. Rev. B. 80, 094411 (2009)

    Article  ADS  Google Scholar 

  17. L.J. Ding, Y. Zhong, S.W. Fan, K.L. Yao, Sol. State Commun. 177, 10–15 (2014)

    Article  ADS  Google Scholar 

  18. Y. Savina, O. Bludov, V. Pashchenko, S.L. Gnatchenko, P. Lemmens, H. Berger, Phys. Rev. B. 84, 104447 (2011)

    Article  ADS  Google Scholar 

  19. Y.O. Savina, A.N. Bludov, V.A. Pashchenko, S.L. Gnatchenko, Y.V. Savin, S. Schäfer, P. Lemmens, H.J. Berger, Low Temp. Phys. 41, 659–661 (2015)

    Article  ADS  Google Scholar 

  20. F. Weickert, N. Harrison, B.L. Scott, M. Jaime, A. Leitmäe, I. Heinmaa, R. Stern, O. Janson, H. Berger, H. Rosner, et al., Phys. Rev. B. 94, 064403 (2016)

    Article  ADS  Google Scholar 

  21. V. Gnezdilov, P. Lemmens, D. Wulferding, Y. Pashkevich, K. Lamonova, K.-Y. Choi, O. Afanasiev, S. Gnatchenko, H.J. Berger, Low. Temp. Phys. 38, 559–569 (2012)

    Article  ADS  Google Scholar 

  22. V. Gnezdilov, P. Lemmens, A.A. Zvyagin, V.O. Cheranovskii, K. Lamonova, Y.G. Pashkevich, R.K. Kremer, H. Berger, Phys. Rev. B. 78, 184407 (2008)

    Article  ADS  Google Scholar 

  23. G. Su, H. Xing, J. Wang, F. Li, Phys. Lett. A. 283, 249–256 (2001)

    Article  ADS  Google Scholar 

  24. M. Klanjšek, H. Mayaffre, C. Berthier, M. Horvatić, B. Chiari, O. Piovesana, P. Bouillot, C. Kollath, E. Orignac, R. Citro, et al., Phys. Rev. Lett. 101, 137207 (2008)

    Article  ADS  Google Scholar 

  25. F. Anfuso, M. Garst, A. Rosch, O. Heyer, T. Lorenz, C. Rüegg, K. Krämer, Phys. Rev. B. 77, 235113 (2008)

    Article  ADS  Google Scholar 

  26. P. Bouillot, C. Kollath, A Läuchli, M. Zvonarev, B. Thielemann, C. Rüegg, E. Orignac, R. Citro, M. Klanjšek, C. Berthier, et al., Phys. Rev. B. 83, 054407 (2011)

    Article  ADS  Google Scholar 

  27. A.W. Sandvik, Phys. Rev. B. 59, R14157 (1999)

    Article  ADS  Google Scholar 

  28. A.S. Freitas, Sol. Stat Comm. 237, 38–41 (2016)

    Article  ADS  Google Scholar 

  29. A.P. Tonel, S.R. Dahmen, A. Foerster, A. Malvezzi, EPL. 64, 111 (2003)

    Article  ADS  Google Scholar 

  30. C. Johnston, R.K. Kremer, M. Troyer, X. Wang, A. Klümper, S.L. Budko, A.F. Panchula, P.C. Canfield, Phys. Rev. B. 61, 9558 (2000)

    Article  ADS  Google Scholar 

  31. T. Makarova, F. Palacio (eds.), Carbon Based Magnetism: an Overview of the Magnetism of Metal Free Carbon-Based Compounds and Materials (Elsevier, Amsterdam, 2006)

  32. H. Iwase, et al., J. Physical Soc. Japan. 65(8), 2397–2400 (1996)

    Article  ADS  Google Scholar 

  33. Y. Ueda, Chem. Mater. 10(10), 2653–2664 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous referees for very helpful comments and suggestions.

Funding

This work was supported by the following Brazilian financial agencies: Capes, Petrobras, CNPq, Fapitec, and PAP-PQ/IFTO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Silva.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, A.S., Reis, M.S., Espínola, J. et al. Spin Gap in β-TeVO4: a Quantum Monte Carlo Study. Braz J Phys 50, 225–229 (2020). https://doi.org/10.1007/s13538-020-00739-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00739-w

Keywords

Navigation