Skip to main content
Log in

A Novel Covariant Approach to Gravito-Electromagnetism

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper describes general relativity at the gravito-electromagnetic precision level as a constrained field theory. In this novel formulation, the gravity field comprises two auxiliary fields, a static matter field and a moving matter field. Equations of motion, continuity equation, energy conservation, field tensor, energy-momentum tensor, constraints, and Lagrangian formulation are presented as a simple and unified formulation that can be useful for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Ruggiero, A. Tartaglia, Gravitomagnetic effects. Nuovo Cim. B117, 743–768 (2002)

    ADS  Google Scholar 

  2. L. Iorio, C. Christian, Gravitomagnetism and gravitational waves. Open Astron. J. 4, 84–97 (2011)

    ADS  Google Scholar 

  3. R.S. Vieira, H.B. Brentan, Covariant theory of gravitation in the framework of special relativity. Eur. Phys. J. Plus. 133, 165 (2018)

    Google Scholar 

  4. A. Tartaglia, M.L. Ruggiero, Gravitoelectromagnetism versus electromagnetism. Eur. J. Phys. 25, 203–210 (2004)

    MATH  Google Scholar 

  5. G. Schaefer, Gravitomagnetic effects. Gen. Rel. Grav. 36, 2223 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  6. G.A. Ummarino, A. Gallerati, Superconductor in a weak static gravitational field. Eur. Phys. J. C77(8), 549 (2017)

    ADS  Google Scholar 

  7. H. Behera, Comments on gravitoelectromagnetism of Ummarino and Gallerati in Superconductor in a weak static gravitational field vs other versions. Eur. Phys. J. C77(12), 822 (2017)

    ADS  Google Scholar 

  8. B. Malekolkalami, M. Farhoudi, About gravitomagnetism. Mod. Phys. Lett. A24, 601–613 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  9. L.F. O. Costa, J. Natario, Gravito-electromagnetic analogies. Gen. Rel. Grav. 46, 1792 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  10. L.F. O. Costa, J. Natário, M. Zilhao, Spacetime dynamics of spinning particles: exact electromagnetic analogies. Phys. Rev. D. 93(10), 104006 (2016)

    ADS  MathSciNet  Google Scholar 

  11. A. Bakopoulos, P. Kanti, From GEM to electromagnetism. Gen. Rel. Grav. 46, 1742 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  12. A. Bakopoulos, P. Kanti, Novel ansatzes scalar quantities in gravito-electromagnetism. Gen. Rel Grav. 49 (3), 44 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  13. B. Mashhoon, Nonlocal gravity: the general linear approximation. Phys. Rev. D90, 124031 (2014)

    ADS  Google Scholar 

  14. A.F. Santos, F.C. Khanna, Lorentz violation, gravitoelectromagnetism and Bhabha scattering at finite temperature. Mod. Phys. Lett. A. 33(10n11), 1850061 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  15. A.F. Santos, F.C. Khanna, Lorentz violation, gravitoelectromagnetic field and Bhabha scattering. Int. J. Mod. Phys. A33(02), 1850015 (2018)

    ADS  MATH  Google Scholar 

  16. E.P. Spaniol, V.C. de Andrade, Gravitomagnetism in teleparallel gravity. Int. J. Mod. Phys. D19, 489–505 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  17. E.P. Spaniol, L.R.A. Belo, V.C. Andrade, Teleparallel gravitoelectromagnetism: the role of boosts in the schwarzschild geometry. Braz. J. Phys. 44(6), 811–816 (2014)

    ADS  Google Scholar 

  18. M.K. Triyanta, J.S. Kosasih, Gravitoelectromagnetism in teleparallel equivalent of general relativity: a new alternative, Vol. 26 (2017)

  19. D. Bini, B. Mashhoon, Relativistic gravity gradiometry. Phys. Rev. D. 94(12), 124009 (2016)

    ADS  MathSciNet  Google Scholar 

  20. J. Ramos, M. Montigny, F.C. Khanna, On a Lagrangian formulation of gravitoelectromagnetism. Gen. Rel. Grav. 42, 2403–2420 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  21. A.F. Santos, F.C. Khanna, Quantized gravitoelectromagnetism theory at finite temperature. Int. J. Mod. Phys. A. 31(20n21), 1650122 (2016)

    ADS  MATH  Google Scholar 

  22. G. Sparano, G. Vilasi, S. Vilasi, The gravity of light. Class. Quant. Grav. 28, 195014 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  23. F. Cabral, F.S.N. Lobo., Gravitational waves and electrodynamics: new perspectives. Eur. Phys. J. C77 (4), 237 (2017)

    ADS  Google Scholar 

  24. F. Cabral, F.S.N. Lobo, Electrodynamics and spacetime geometry: foundations. Found. Phys. 47(2), 208–228 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  25. F. Cabral, F.S.N. Lobo, Electrodynamics spacetime and geometry: astrophysical applications. Eur. Phys. J. Plus. 132(7), 304 (2017)

    Google Scholar 

  26. M. L. Ruggiero, Gravitomagnetic field of rotating rings. Astrophys. Space Sci. 361(4), 140 (2016)

    ADS  MathSciNet  Google Scholar 

  27. M.L. Ruggiero, Gravito-electromagnetic effects of massive rings. Int. J. Mod. Phys. D. 24(08), 1550060 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  28. M.L. Ruggiero, A. Tartaglia, A note on the Sagnac effect and current terrestrial experiments. Eur. Phys. J. Plus. 129, 126 (2014)

    Google Scholar 

  29. M.L. Ruggiero, Sagnac effect, ring lasers and terrestrial tests of gravity. Galaxies. 3(2), 84–102 (2015)

    ADS  Google Scholar 

  30. D. Bini, B. Mashhoon, Weitzenböck’s torsion, Fermi coordinates and adapted frames. Phys. Rev. D91, 084026 (2015)

    ADS  Google Scholar 

  31. G. Manfredi, The Schrödinger-newton equations beyond newton. Gen. Rel. Grav. 47(2), 1 (2015)

    ADS  MATH  Google Scholar 

  32. B. Malekolkalami, M. Farhoudi, Gravitomagnetism and non-commutative geometry. Int. J. Theor. Phys. 53, 815–829 (2014)

    MATH  Google Scholar 

  33. B. Mashhoon, Y.N. Obukhov, Spin precession in inertial and gravitational fields. Phys. Rev. D. 88(6), 064037 (2013)

    ADS  Google Scholar 

  34. G. Acquaviva, D. Kofron, M. Scholtz, A gravitational energy-momentum and the thermodynamic description of gravity. Class. Quant. Grav. 35(9), 095001 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  35. J.Q. Quach, Gravitational Casimir effect. Phys. Rev. Lett. 114(8), 081104 (2015)

    ADS  MathSciNet  Google Scholar 

  36. J. Ramos, M. Montigny, F.C. Khanna, Weyl gravitoelectromagnetism. Gen. Rel. Grav. 50(7), 83 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  37. H. Behera, P.C. Harihar, Gravitomagnetic moments and dynamics of Dirac’s (spin 1/2) fermions in flat space-time Maxwellian gravity. Int. J. Mod Phys. A19, 4207–4230 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  38. H. Behera, N. Barik, A new set of maxwell-lorentz equations and rediscovery of Heaviside-Maxwellian (Vector) gravity from quantum field theory. arXiv:1810.04791 [physics.gen-ph] (2018)

  39. H. Ohanian, R. Ruffini. Gravitation and space-time (Cambridge University Press, Cambridge, 2013)

    MATH  Google Scholar 

  40. W.B. Campbell, T. Morgan, Debye potentials for the gravitational field. Physica. 53, 264–288 (1971)

    ADS  MathSciNet  Google Scholar 

  41. W.B. Campbell, The linear theory of gravitation in the radiation gauge. Gen. Rel. Grav. 4, 137 (1973)

    ADS  MathSciNet  Google Scholar 

  42. W.B. Campbell, T. Morgan, Maxwell form of the linear theory of gravitation. Am. J. Phys. 44, 356 (1976)

    ADS  Google Scholar 

  43. W.B. Campbell, J. Macek, T.A. Morgan, Relativistic time dependent multipole analysis for scalar, electromagnetic, and gravitational fields. Phys. Rev. D15, 2156–2164 (1977)

    ADS  MathSciNet  Google Scholar 

  44. M. Milgrom, A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983)

    ADS  Google Scholar 

  45. M. Milgrom, MOND theory. Can. J. Phys. 93(2), 107–118 (2015)

    ADS  Google Scholar 

  46. E. Fischbach, C. L. Talmadge. The Search for non-Newtonian gravity (Springer, Berlin, 1999)

    MATH  Google Scholar 

  47. C.W.F. Everitt, et al., The gravity probe B test of general relativity. Class. Quant. Grav. 32(22), 224001 (2015)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Giardino.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giardino, S. A Novel Covariant Approach to Gravito-Electromagnetism. Braz J Phys 50, 372–378 (2020). https://doi.org/10.1007/s13538-020-00746-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00746-x

Keywords

Navigation