Skip to main content
Log in

Systematic Calculation of Neutrino–Nucleus Cross Section Available for Astrophysical Applications

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Assuming the universality of weak interactions, we have studied the weak processes such as β-decay and electron capture using the nuclear gross theory of beta decay (GTBD). We evaluate the β± and electron capture decay rates and the neutrino–nucleus cross sections as a function of the energy of the incident neutrino, for Eν < 250 MeV. The evaluation performed some years ago for the electron neutrino–nucleus reactions in the mass region A < 70 is extended to the heavy one A < 220 for a set of 965 nuclear species of astrophysical interest. The nuclei are separated according to its parity in even–even, even–odd, odd–odd, and odd–even nuclei, both for β±-decay and electron capture. The obtained cross sections are interpolated by means of a fourth-degree polynomial function in Eν. The coefficients in these polynomials are obtained and later fitted as a function of A and Z. The fitting procedure is described in detail paying special attention to the root mean square deviations in the adjustment. These polynomial functions provide a tool for the systematic evaluation of the cross sections needed in astrophysical processes like the r-process during the nucleosynthesis of supernovae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Itoh, Y. Kohyama, A Fujii, Nucl. Phys. A. 287, 501 (1997)

    Google Scholar 

  2. N. Itoh, Y. Kohyama, Nucl. Phys. A. 306, 527 (1978)

    Article  ADS  Google Scholar 

  3. N.Yu. Agafonova, et al., Astr. Phys., 27 (2007)

  4. M. Antonello, et al., [ICARUS Collaboration]. Eur. Phys. J. C. 73, 2599 (2013). https://doi.org/10.1140/epjc/s10052-013-2599-z, [arXiv:https://arxiv.org/abs/1307.4699 [hep-ex]]

    Article  ADS  Google Scholar 

  5. R. Acciarri, et al., [ArgoNeuT Collaboration]. Phys. Rev. D. 95(7), 072005 (2017). https://doi.org/10.1103/PhysRevD.95.072005 [arXiv:https://arxiv.org/abs/1610.04102 [hepex]]

    Article  ADS  Google Scholar 

  6. K. Zuber, [HALO Collaboration]. Nucl. Part. Phys. Proc. 265–266, 233–235 (2015). https://doi.org/10.1016/j.nuclphysbps.2015.06.059

    Article  Google Scholar 

  7. A. Samana, F. Krmpotic, A. Mariano, R. Zukanovich Funchal, Phys. Lett. B. 642, 100 (2006)

    Article  ADS  Google Scholar 

  8. J.N. Bahcall. Neutrino Astrophysics (Cambridge University Press, New York, 1989)

    Google Scholar 

  9. A.R. Samana, C.A. Barbero, S.B. Duarte, A.J. Dimarco, F. Krmpotic, New Jour. Phys. 10, 033007 (2008)

    Article  ADS  Google Scholar 

  10. C. Athanassopoulos, et al., LSND Collaboration. Phys. Rev. C. 54, 2685 (1996)

    Article  ADS  Google Scholar 

  11. C. Athanassopoulos, et al., LSND Collaboration. Phys. Rev. Lett. 77, 3082 (1996)

    Article  ADS  Google Scholar 

  12. C. Athanassopoulus, et al., LSND Collaboration. Phys. Rev. C. 58, 2489 (1998)

    Article  ADS  Google Scholar 

  13. C. Athanassopoulus, et al., LSND Collaboration. Phys. Rev. Lett. 81, 1774 (1998)

    Article  ADS  Google Scholar 

  14. A. Aguilar, et al., LSND Collaboration. Phys. Rev. D. 64, 112007 (2001)

    Article  ADS  Google Scholar 

  15. G.M. Fuller, B.S. Meyer, Astr. J. 453, 792 (1995)

    Article  ADS  Google Scholar 

  16. J.S. O’Connell, T.W. Donnelly, J.D. Walecka, Phys. Rev. C. 6, 719 (1972)

    Article  ADS  Google Scholar 

  17. I.N. Borzov, S. Goriely, Phys. Rev. C. 62, 035501 (2000)

    Article  ADS  Google Scholar 

  18. A.R. Samana, C.A. Bertulani, Phys. Rev. C. 78, 024312 (2008)

    Article  ADS  Google Scholar 

  19. F. Krmpotic, A. Mariano, A. Samana, Phys. Lett. B. 541, 298 (2002)

    Article  ADS  Google Scholar 

  20. F. Krmpotic, A. Samana, A. Mariano, Phys. Rev. C. 71, 044319 (2005)

    Article  ADS  Google Scholar 

  21. A.R. Samana, F. Krmpotic, C.A. Bertulani, Comp. Phys. Comm. 181, 1123 (2010)

    Article  ADS  Google Scholar 

  22. A.R. Samana, F. Krmpotic, N. Paar, C.A. Bertulani, Phys. Rev. C. 83, 024303 (2011)

    Article  ADS  Google Scholar 

  23. D. Sande Santos, A.R. Samana, A.J. Dimarco, F. Krmpotić, A systematic calculation of muon capture rates in the number projected QRPA. PoS XXXIVBWNP, 120. https://doi.org/10.22323/1.142.0120(2011)

  24. K. Takahashi, M. Yamada, Prog. Theor. Phys. 41, 1470 (1969)

    Article  ADS  Google Scholar 

  25. T. Kodama, K. Takahashi, Nuc. Phys. A. 239, 489 (1975)

    Article  ADS  Google Scholar 

  26. T. Tachibana, M. Yamada, Y. Yoshida, Prog. Theor. Phys. 84, 641 (1990)

    Article  ADS  Google Scholar 

  27. A.H. Wapstra, G. Audi, R. Hoekstra, At. Data Nucl. Data Tables. 39, 281 (1988)

    Article  ADS  Google Scholar 

  28. T. Tachibana, M. Uno, M. Yamada, S. Yamada, At. Data Nucl. Data Tables. 39, 251 (1988)

    Article  ADS  Google Scholar 

  29. D.J. Horen, et al., Phys. Lett. B. 95, 27 (1980)

    Article  ADS  Google Scholar 

  30. D.J. Horen, et al., Phys. Lett. B. 99, 383 (1981)

    Article  ADS  Google Scholar 

  31. C. Gaarde, et al., Nucl. Phys. A. 369, 258 (1981)

    Article  ADS  Google Scholar 

  32. K. Nakayama, A.P Galeao, F. Krmpotic, Phys. Lett. B. 114, 217 (1982)

    Article  ADS  Google Scholar 

  33. K. Nakayama, A.P. Galeao, F. Krmpotic, Nucl. Phys. A. 399, 478 (1983)

    Article  ADS  Google Scholar 

  34. B. Pritychenko, Nuclear Wallet Cards online at http://www.nndc.bnl.gov/wallet (2006)

  35. R. Lazauskas, C. Volpe, Nucl. Phys. A. 792, 219 (2007)

    Article  ADS  Google Scholar 

  36. N. Paar, D. Vretenar, T. Marketin, P. Ring, Phys. Rev. C. 77, 024608 (2008)

    Article  ADS  Google Scholar 

  37. C. Volpe, N. Auerbach, C. Coló, N. Van Giai, Phys. Rev. C. 65, 044603 (2002)

    Article  ADS  Google Scholar 

  38. J. Engel, G.C. McLaughlin, C. Volpe, Phys. Rev. C. 67, 013005 (2003)

    ADS  Google Scholar 

  39. C. Barbero, J.G. Hirsch, A. Mariano, Nucl. Phys. A. 874, 81 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

C.B. is fellow of the CONICET, CCT La Plata (Argentina). A.R.S. acknowledges the financial support of FAPESB (Fundaçâo de Amparo à Pesquisa do Estado Bahia) TERMO DE OUTORGA PIE0013/2016. The authors thank the partial support of UESC (PROPP 00220.1300.1832).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Barbero.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbero, C.A., dos Santos, M.C. & Samana, A.R. Systematic Calculation of Neutrino–Nucleus Cross Section Available for Astrophysical Applications. Braz J Phys 50, 331–345 (2020). https://doi.org/10.1007/s13538-020-00737-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00737-y

Keywords

Navigation