Skip to main content
Log in

Methanol-Filled Hybrid Photonic Crystal Fiber with High Birefringent and Negative Dispersion

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

A unique hexagonal lattice structure of silica-based solid core photonic crystal fiber (PCF) surrounded by array of air holes is proposed. The cladding portion of the structure consists of five rings where core is made up of 11 small rings filled with methanol. Three different-shaped structures are used to analyze the effect on PCF parameters where the first structure uses circular air holes in cladding and core, the second structure consists of circular air holes in cladding and elliptical air holes in core, and the last structure was designed by using elliptical air holes in both cladding and core. Optical properties birefringence, confinement loss, and negative dispersion have been found theoretically and compared. A novel and relatively simple approach depicts the results that attain high birefringence, low confinement loss, and negative dispersion. It is found that the presence of elliptic air holes instead of circular air holes in the core region and the cladding brings higher birefringence, low confinement loss, and highly negative dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. Russel, Trapping light behind bars. IEEE Explore 2, 7 (2002). https://doi.org/10.1109/ICTON.2002.1007833

    Article  Google Scholar 

  2. A. Ortigosa-Blanch, J.C. Knight, W.J. Wadsworth, J. Arriaga, B.J. Mangan, T.A. Birks, P.S.J. Russell, Highly birefringent photonic crystal fibers. Opt. Lett. 25, 1325–1327 (2000). https://doi.org/10.1364/OL.25.001325

    Article  ADS  Google Scholar 

  3. T.A. Birks, J.C. Knight, P.S.J. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997). https://doi.org/10.1364/OL.22.000961

    Article  ADS  Google Scholar 

  4. D.C. Tee, M.H.A. Bakar, N. Tamchek, F.R.M. Adikan, Photonic crystal fiber in photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands. IEEE Photonics J. 5, 1–8 (2013). https://doi.org/10.1109/JPHOT.2013.2265980

    Article  Google Scholar 

  5. M.F.H. Arif, K. Ahmed, S. Asaduzzaman, M.A.K. Azad, Design and optimization of photonic crystal fiber for liquid sensing applications. Photonic Sens. 6, 279–288 (2016). https://doi.org/10.1007/s13320-016-0323-y

    Article  ADS  Google Scholar 

  6. D.S. Bomse, M.N. Ediger, Simultaneous detection of multiple gases by Raman spectroscopy with hollow-core fibers. OSA Technical Digest., 1–2 (2014). https://doi.org/10.1364/CLEO_AT.2014.JW2A.7

  7. M.F.H. Arifa, M.J.H. Biddutb, Enhancement of relative sensitivity of photonic crystal fiber with high birefringence and low confinement loss. Optik 131, 697–704 (2016). https://doi.org/10.1016/j.ijleo.2016.11.203

    Article  ADS  Google Scholar 

  8. G.K.M. Hasanuzzaman, S. Rana, M.S. Habib, A novel low loss, highly birefringent photonic crystal fiber in THz regime. IEEE Photon. Technol. Lett. 28, 899–902 (2016). https://doi.org/10.1109/LPT.2016.2517083

    Article  ADS  Google Scholar 

  9. S. Cai, S. Yu, Y. Wang, M. Lan, L. Gao, W. Gu, Hybrid dual-core photonic crystal fiber for spatial mode conversion. IEEE Photon. Technol. Lett. 28, 339–342 (2016). https://doi.org/10.1109/LPT.2015.2496165

    Article  ADS  Google Scholar 

  10. L. Jiang, Y. Zheng, L. Hou, K. Zheng, P. Jiying, Z. Xingtao, An ultra braoadband polarization splitter based on square-lattice dual core photonic crystal fiber with a gold wire. Opt. Commun. 351, 50–56 (2015). https://doi.org/10.1016/j.optcom.2015.04.015

    Article  ADS  Google Scholar 

  11. Z. Kakaie, B.H. Shakibaei, Y.M. Sua, D.M. Chow, G.A. Mahdiraji, F.R.M. Adikan, Design of single-band bandpass filter using photonic band gap fiber by suppressing core modes in higher order bandgaps. IEEE Photonics Journals 7 (2015). https://doi.org/10.1109/JPHOT.2015.2440756

  12. D. Lu, J. Liu, Broadband single-polarization single-mode operation in photonic crystal fibers with hexagonally latticed circular airholes. J. Lightwave Technol. 34, 2452–2458 (2016). https://doi.org/10.1109/JLT.2016.2532905

    Article  ADS  Google Scholar 

  13. D. Yan, H. Zhang, D. Xu, W. Shi, C. Yan, P. Liu, J. Shi, J. Yao, Numerical study of compact terahertz gas laser based on photonic crystal Fiber cavity. J. Lightwave Technol. 34, 3373–3378 (2016). https://doi.org/10.1109/JLT.2016.2572218

    Article  ADS  Google Scholar 

  14. P.S. Maji, P.R. Chaudhuri, Designing an ultra-negative dispersion photonic crystal fiber (PCFs) with square lattice geometry. Hindawi Publishing Corporation, 1–7 (2014). https://doi.org/10.1155/2014/545961

  15. R.R. Mahmud, S.M.A. Razzak, M.I. Hasan, M.S. Habib, A new photonic crystal fiber design on the high negative ultra-flattened dispersion for both x and y polarization modes. Optik 127, 8670–8677 (2016). https://doi.org/10.1016/j.ijleo.2016.06.044

    Article  ADS  Google Scholar 

  16. R.K. Gangwar, V.K. Singh, Study of highly birefringence dispersion shifted photonic crystal fiber with asymmetrical cladding. Optik 127, 11854–11859 (2016). https://doi.org/10.1016/j.ijleo.2016.09.101

    Article  ADS  Google Scholar 

  17. A.O. Blanch, J.C. Knight, W.J. Wadsworth, J. Arriaga, B.J. Mangan, T.A. Birk, P.S.J. Russell, Highly birefringent photonic crystal fibers. Opt. Lett. 18, 1325–1327 (2000). https://doi.org/10.1364/OL.25.001325

    Article  Google Scholar 

  18. Asaduzzaman S, Ahmed K, Arif MFH, Morshed M (2015) Proposal of a simple structure photonic crystal fiber for lower indexed chemical sensing. IEEE Xplore 127–131. https://doi.org/10.1109/ICCITechn.2015.7488055

  19. A.M. Heikal, F.F.K. Hussain, M.F.O. Hameed, S.S.A. Obayy, Efficient polarization filter design based on plasmonic photonic crystal Fiber. J. Lightwave Technol. 33, 2868–2874 (2015). https://doi.org/10.1109/JLT.2015.2419175

    Article  ADS  Google Scholar 

  20. A.A. Rifat, G.A. Mahdiraji, Y.M. Sua, Y.G. Shee, R. Ahmed, D.M. Chow, F.R.M. Adika, Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach. IEEE Photon. Technol. Lett. 27, 1628–1631 (2015). https://doi.org/10.1109/LPT.2015.2432812

    Article  ADS  Google Scholar 

  21. N. Luan, R. Wang, W. Lv, Y. Lu, J. Yao, Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires. Sensors 9, 16035–16045 (2014). https://doi.org/10.3390/s140916035

    Article  Google Scholar 

  22. M.F.H. Arif, K. Ahmed, S. Asaduzzaman, A comparative analysis of two different PCF structures for gas sensing application. IEEE Xplore, 247–252 (2015). https://doi.org/10.1109/ICAEE.2015.7506842

  23. M. Morshed, M.I. Hasan, S.A. Razzak, Enhancement of the sensitivity of gas sensor based on microstructure optical fiber. Photonic. Sensors. 4, 312–320 (2015). https://doi.org/10.1007/s13320-015-0247-y

    Article  ADS  Google Scholar 

  24. H. Ademgi, S. Haxha, Highly birefringent nonlinear PCF for optical sensing of analytes in aqueous solutions. Optik 127, 6653–6660 (2016). https://doi.org/10.1016/j.ijleo.2016.04.137

    Article  ADS  Google Scholar 

  25. L. An, Z. Zheng, Z. Li, T. Zhou, J. Cheng, Ultra-wideband single-polarization single-mode, high nonlinearity photonic crystal fiber. Opt. Commun. 282, 3266–3269 (2009). https://doi.org/10.1016/j.optcom.2009.05.033

    Article  ADS  Google Scholar 

  26. J. Yang, C. Guan, P. Tian, R. Chu, P. Ye, K. Wang, J. Shi, J. Yang, L. Yuan, High sensitivity temperature sensor based on liquid filled hole-assisted dual-core fiber. Sensors and Actuators: A. Physical In press. (2019). https://doi.org/10.1016/j.sna.2019.111696

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahir Uddin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, S., Hassan, M.A., Singh, S.S. et al. Methanol-Filled Hybrid Photonic Crystal Fiber with High Birefringent and Negative Dispersion. Braz J Phys 50, 282–290 (2020). https://doi.org/10.1007/s13538-020-00738-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00738-x

Keywords

Navigation