Skip to main content
Log in

Inconsistency of Chemical Properties of Stellar Populations in the Thick Disk Subsystem of our Galaxy

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract—Using modern published data on velocities and spectroscopic definitions of chemical elements in stellar objects of the Galaxy, we investigated the relationship of chemical composition with the kinematics of different populations. The paper shows that the old stellar populations of the Galaxy, belonging (by the kinematic criterion) to the thick disk subsystem—globular clusters, field variables of the type RR Lyrae (lyrids), as well as close F– G dwarfs and field giants, have different chemical composition. In particular, the dwarfs and giants of the field are on average more metallic than the globular clusters and lyrids of the field. Moreover, the relative abundances of α-elements in the range [Fe/H] > −1.0 are the highest for globular clusters, and are the lowest for field variables of the RR Lyrae type. Based on the analysis of the nature of the dependences of [α/Fe] on [Fe/H] for these objects it was suggested that the thick disk subsystem in the Galaxy is composite and at least three components exist independently within it. The oldest one includes metal-rich globular clusters that formed from a single proto-galactic cloud shortly after the start of type Ia supernovae outbursts. Then the subsystem of field stars of a thick disk was formed as a result of “heating” of stars of already formed thin disk of the Galaxy by a rather massive dwarf satellite galaxy that fell on it. And finally, subsystems of field stars with the kinematics of not only a thick, but even a thin disk that fell on the Galaxy from this captured satellite galaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. Actually, the dip in globular clusters is located at a slightly higher metallicity (see Borkova and Marsakov, 2000), but it’s more convenient to accept this round number used commonly.

  2. http://vizier.u-strasbg.fr/viz-bin/VizieR? -source=J/AZh/95/54.

  3. Note that the maxima of distributions in field stars of the thick disk have slightly higher metallicity than the average values due to long metal-poor “tails”.

  4. Features of the change in each of the four α-elements can be seen in Figs. 2a–2d in Marsakov et al. (2018), which show that the lowest relative abundances are observed for titanium, although for other elements they are usually lower than the average for field stars.

REFERENCES

  1. M. G. Abadi, J. F. Navarro, M. Steinmetz, and V. R. Eke, Astrophys. J. 597 (1), 21 (2003).

    Article  ADS  Google Scholar 

  2. S. M. Andrievsky, J. R. D. Lepine, S. A. Korotin, et al. Monthly Notices Royal Astron. Soc. 428 (4), 3252 (2013).

    Article  ADS  Google Scholar 

  3. V. Belokurov, D. Erkal, N. W. Evans, et al., Monthly Notices Royal Astron. Soc. 478 (1), 611 (2018).

    Article  ADS  Google Scholar 

  4. T. Bensby, S. Feltzing, and I. Lundstrom, Astron. and Astrophys. 410, 527 (2003).

    Article  ADS  Google Scholar 

  5. T. Bensby, S. Feltzing, and M. S. Oey, Astron. and Astrophys. 562, A71 (2014).

    Article  ADS  Google Scholar 

  6. T. V. Borkova and V. A. Marsakov, Astronomy Reports 44 (10), 665 (2000).

    Article  ADS  Google Scholar 

  7. C. B. Brook, D. Kawata, B. K. Gibson, and K. C. Freeman, Astrophys. J. 612 (2), 894 (2004).

    Article  ADS  Google Scholar 

  8. A. A. Chemel, E. V. Glushkova, A. K. Dambis, et al., Astrophysical Bulletin 73 (2), 162 (2018).

    Article  ADS  Google Scholar 

  9. G. Clementini, E. Carretta, R. Gratton, et al., Astron. J. 110, 2319 (1995).

    Article  ADS  Google Scholar 

  10. A. K. Dambis, L. N. Berdnikov, A. Y. Kniazev, et al., Monthly Notices Royal Astron. Soc. 435 (4), 3206 (2013).

    Article  ADS  Google Scholar 

  11. O. J. Eggen, D. Lynden-Bell, and A. R. Sandage, Astrophys. J. 136, 748 (1962).

    Article  ADS  Google Scholar 

  12. R. G. Gratton, E. Carretta, F. Matteucci, and C. Sneden, Astron. and Astrophys. 358, 671 (2000).

    ADS  Google Scholar 

  13. W. E. Harris, arXiv:1012.3224 (2010).

  14. A. Helmi, C. Babusiaux, H. H. Koppelman, et al., Nature 563 (7729), 85 (2018).

    Article  ADS  Google Scholar 

  15. T. D. Kinman, Monthly Notices Royal Astron. Soc. 119, 538 (1959).

    Article  ADS  Google Scholar 

  16. P. Kroupa, Monthly Notices Royal Astron. Soc. 330 (3), 707 (2002).

    Article  ADS  Google Scholar 

  17. B. V. Kukarkin, Gobular star clusters. The general catalogue of globular star clusters of our galaxy, concerning information on 129 objects known before 1974 (1974). [in Russian].

  18. S. Liu, G. Zhao, Y.-Q. Chen, et al., Research in Astronomy and Astrophysics 13 (11), 1307 (2013).

    Article  ADS  Google Scholar 

  19. J. T. Mackereth, R. P. Schiavon, J. Pfeffer, et al., Monthly Notices Royal Astron. Soc. 482 (3), 3426 (2019).

    Article  ADS  Google Scholar 

  20. V. A. Marsakov, M. L. Gozha, and V. V. Koval, Astronomy Reports 62 (1), 50 (2018).

    Article  ADS  Google Scholar 

  21. V. A. Marsakov, M. L. Gozha, and V. V. Koval’, Astronomy Reports 63 (3), 203 (2019a).

    Article  ADS  Google Scholar 

  22. V. A. Marsakov, V. V. Koval’, and M. L. Gozha, Astrophysical Bulletin 74 (4), 403 (2019b).

    Article  ADS  Google Scholar 

  23. V. A. Marsakov, V. V. Koval’, and M. L. Gozha, Astronomy Reports 63 (4), 274 (2019c).

    Article  ADS  Google Scholar 

  24. V. A. Marsakov, V. V. Koval’, V. V. Kovtyukh, and T. V. Mishenina, Astronomy Letters 39 (12), 851 (2013).

    Article  ADS  Google Scholar 

  25. V. A. Marsakov and A. A. Suchkov, Soviet Astronomy Letters 2, 148 (1976).

    ADS  Google Scholar 

  26. V. A. Marsakov and A. A. Suchkov, Sov. Astron. 21, 700 (1977).

    ADS  Google Scholar 

  27. F. Matteucci, Astrophys. and Space Sci. 284 (2), 539 (2003).

    Article  ADS  Google Scholar 

  28. W. W. Morgan, Astron. J. 64, 432 (1959).

    Article  ADS  Google Scholar 

  29. J. X. Prochaska, S. O. Naumov, B. W. Carney, et al., Astron. J. 120 (5), 2513 (2000).

    Article  ADS  Google Scholar 

  30. M. Salaris and A. Weiss, Astron. and Astrophys. 388, 492 (2002).

    Article  ADS  Google Scholar 

  31. R. Schonrich and J. Binney, Monthly Notices Royal Astron. Soc. 396 (1), 203 (2009).

    Article  ADS  Google Scholar 

  32. D. A. Van den Berg, K. Brogaard, R. Leaman, and L. Casagrande, Astrophys. J. 775 (2), 134 (2013).

    Article  ADS  Google Scholar 

  33. K. A. Venn, M. Irwin, M. D. Shetrone, et al., Astron. J.128 (3), 1177 (2004).

    Article  ADS  Google Scholar 

  34. R. Zinn, Astrophys. J. 293, 424 (1985).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the anonymous referee for valuable comments that made the results of the work more reasonably presented.

Funding

Authors are grateful to the Laboratory of Cosmic Microphysical Studies of the Structure and Dynamics of the Galaxy, Institute of Physics, Southern Federal University, for the support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Marsakov, V. V. Koval’ or M. L. Gozha.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by T. Sokolova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marsakov, V.A., Koval’, V.V. & Gozha, M.L. Inconsistency of Chemical Properties of Stellar Populations in the Thick Disk Subsystem of our Galaxy. Astrophys. Bull. 75, 21–30 (2020). https://doi.org/10.1134/S1990341320010058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341320010058

Keywords:

Navigation