Skip to main content
Log in

Effective Gyroresonance Layers in the Transition Region of the Active Region of the Solar Atmosphere. Magnetic Fields and Heights

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract—We present a method of determination of numbers of gyroresonance layers most effectively radiating in the transition region of the active solar atmosphere. It is based on determination of frequency in the spectrum of an extraordinary wave of an active region, at which the gradient of this spectrum abruptly rises. Observations of 29 active regions carried out at the RATAN-600 radio telescope have been analyzed. The magnetic field in the transition region was determined from the frequency of bending point in the spectrum of antenna temperatures in an extraordinary mode under condition of emission in the third harmonic of the gyrofrequency. The relation between the photospheric magnetic field strength and the magnetic field strength in the transition region (1.52–2.28) is substantially greater than previously obtained, namely, the field isdecreasedonlyby10–20% in the transition region. The heights in the transition region were determined from the reconstructed magnetic field in the nonlinear force-free approximation, and are in the range of 1.00–3.57 Mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. http://jsoc.stanford.edu/ajax/lookdata.html.

  2. http://jsoc.stanford.edu/ajax/lookdata.html.

REFERENCES

  1. S. B. Akhmedov, G. B. Gelfreikh, V. M. Bogod, and A. N. Korzhavin, Sol. Phys. 79 (1), 41 (1982).

    Article  ADS  Google Scholar 

  2. C. E. Alissandrakis, Astron. and Astrophys. 100 (1), 197 (1981).

    ADS  Google Scholar 

  3. C. E. Alissandrakis, G. B. Gel’Frejkh, V. N. Borovik, et al., Astron. and Astrophys. 270 (1-2), 509 (1993).

    ADS  Google Scholar 

  4. C. E. Alissandrakis and M. R. Kundu, Astron. and Astrophys. 139 (2), 271 (1984).

    ADS  Google Scholar 

  5. C. E. Alissandrakis, M. R. Kundu, and P. Lantos, Astron. and Astrophys. 82 (1-2), 30 (1980).

    ADS  Google Scholar 

  6. M. J. Aschwanden and T. S. Bastian, Astrophys. J. 426, 425 (1994a).

    Article  ADS  Google Scholar 

  7. M. J. Aschwanden and T. S. Bastian, Astrophys. J. 426, 434 (1994b).

    Article  ADS  Google Scholar 

  8. V. M. Bogod, A. G. Stupishin, and L. V. Yasnov, Sol. Phys. 276 (1-2), 61 (2012).

    Article  ADS  Google Scholar 

  9. V. M. Bogod and L. V. Yasnov, Astrophysical Bulletin 64 (4), 372 (2009).

    Article  ADS  Google Scholar 

  10. V. M. Bogod and L. V. Yasnov, Sol. Phys. 291 (11), 3317 (2016).

    Article  ADS  Google Scholar 

  11. J. W. Brosius, J. M. Davila, R. J. Thomas, and S. M. White, Astrophys. J. 488 (1), 488 (1997).

    Article  ADS  Google Scholar 

  12. M. L. De Rosa, C. J. Schrijver, G. Barnes, et al., Astrophys. J. 696 (2), 1780 (2009).

    Article  ADS  Google Scholar 

  13. D. E. Gary and G. J. Hurford, Astrophys. J. 420, 903 (1994).

    Article  ADS  Google Scholar 

  14. D. E. Gary, Y. Leblanc, G. A. Dulk, and L. Golub, Astrophys. J. 412, 421 (1993).

    Article  ADS  Google Scholar 

  15. G. B. Gelfreikh, N. G. Peterova, and B. I. Riabov, Sol. Phys. 108 (1), 89 (1987).

    Article  ADS  Google Scholar 

  16. T. I. Kaltman, V. M. Bogod, A. G. Stupishin, and L. V. Yasnov, Astronomy Reports 56 (10), 790 (2012).

    Article  ADS  Google Scholar 

  17. K. R. Lang, R. F. Willson, J. N. Kile, et al., Astrophys. J. 419, 398 (1993a).

    Article  ADS  Google Scholar 

  18. K. R. Lang, R. F. Willson, J. N. Kile, et al., Astrophys. J. 419, 398 (1993b).

    Article  ADS  Google Scholar 

  19. J. W. Lee, G. J. Hurford, and D. E. Gary, Sol. Phys. 144 (1), 45 (1993).

    Article  ADS  Google Scholar 

  20. K. D. Leka, G. Barnes, A. D. Crouch, et al., Sol. Phys. 260 (1), 83 (2009).

    Article  ADS  Google Scholar 

  21. T. R. Metcalf, Sol. Phys. 155 (2), 235 (1994).

    Article  ADS  Google Scholar 

  22. T. R. Metcalf, M. L. De Rosa, C. J. Schrijver, et al., Sol. Phys. 247 (2), 269 (2008).

    Article  ADS  Google Scholar 

  23. Y. Mok, Z. Mikic, R. Lionello, and J. A. Linker, Astrophys. J. 621 (2), 1098 (2005).

    Article  ADS  Google Scholar 

  24. Y. Nakagawa and M. A. Raadu, Sol. Phys.25 (1), 127 (1972).

    Article  ADS  Google Scholar 

  25. G. M. Nita, G. D. Fleishman, J. Jing, et al., Astrophys. J. 737 (2), 82 (2011).

    Article  ADS  Google Scholar 

  26. C. J. Schrijver, M. L. De Rosa, T. R. Metcalf, et al., Sol. Phys.235 (1-2), 161 (2006).

    Article  ADS  Google Scholar 

  27. C. J. Schrijver, M. L. DeRosa, T. Metcalf, et al., Astrophys. J. 675 (2), 1637 (2008).

    Article  ADS  Google Scholar 

  28. C. L. Selhorst, A. Silva-Valio, and J. E. R. Costa, Astron. and Astrophys. 488 (3), 1079 (2008).

    Article  ADS  Google Scholar 

  29. K. Shibasaki, Astrophys. and Space Sci. 119 (1), 21 (1986).

    Article  ADS  Google Scholar 

  30. Z. Wang, D. E. Gary, G. D. Fleishman, and S. M. White, Astrophys. J. 805 (2), 93 (2015).

    Article  ADS  Google Scholar 

  31. S. M. White, M. R. Kundu, and N. Gopalswamy, Astrophys. J. 366, L43 (1991).

    Article  ADS  Google Scholar 

  32. T. Wiegelmann, Sol. Phys. 219 (1), 87 (2004).

    Article  ADS  Google Scholar 

  33. L. V. Yasnov, Sol. Phys. 289 (4), 1215 (2014).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the reviewer for comments that improved the paper.

Funding

This paper was supported by the Russian Foundation for Basic Research (grants no. 8-2921016-mk and no. 18-02-00045), and also performed as part of state assignment No. АААА-А17117011810013-4, within the program of the Presidium of the Russian Academy of Sciences no. 28 “Space: research of fundamental processes and their interaction”, project 1D.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. V. Yasnov, V. M. Bogod or A G. Stupishin.

Ethics declarations

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Translated by N. Oborina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasnov, L.V., Bogod, V.M. & Stupishin, A.G. Effective Gyroresonance Layers in the Transition Region of the Active Region of the Solar Atmosphere. Magnetic Fields and Heights. Astrophys. Bull. 75, 50–58 (2020). https://doi.org/10.1134/S1990341320010071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341320010071

Keywords:

Navigation