Skip to main content
Log in

Globular Clusters of the Galaxy: Chemical Composition vs Kinematics

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

A comprehensive statistical analysis of the relationship between the chemical and spatially kinematic parameters of the globular clusters of the Galaxy has been performed. The data of the author’s compilation catalog contain astrophysical parameters for 157 clusters and the relative abundances of α-elements for 69 clusters. For 121 clusters, the data are supplemented by spatially kinematic parameters taken from the literature. The phenomenon of reddening of horizontal branches of low-metal accreted globular clusters is discussed. We consider the contradiction between the criteria for clusters to belong to the subsystems of the thick disk and the halo in terms of chemical and kinematic properties. It consists in the fact that, regardless of belonging to the galactic subsystems by kinematics, almost all metallic ([Fe/H] >–1.0) clusters are located close to the center and plane of the Galaxy, while among the less metallic of both subsystems there are many distant ones. Differences in the abundances of α-elements in the stellar objects of the Galaxy and the surrounding low-mass dwarf satellite galaxies confirm the well-known conclusion that all globular clusters and field stars of the accreted halo are remnants of galaxies of higher mass than the current environment of the Galaxy. A possible exception is a distant low-metal cluster with low relative abundance of α-elements Rup 106.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Marsakov, V. V. Koval’, and M. L. Gozha, Astronomy Reports 63, 274 (2019).

    Article  ADS  Google Scholar 

  2. T. V. Borkova and V. A. Marsakov, Astronomy Reports 44, 665 (2000).

    Article  ADS  Google Scholar 

  3. V. A. Marsakov and A. A. Suchkov, Sov. Astron. 21, 700 (1977).

    ADS  Google Scholar 

  4. E. Carretta, IAU Symp. 317, 97 (2016).

    ADS  Google Scholar 

  5. B. J. Pritzl, K. A. Venn, and M. Irwin, Astron. J. 130, 2140 (2005).

    Article  ADS  Google Scholar 

  6. W. E. Harris, Astron. J. 112, 1487 (1996); 2010 edition [arXiv:1012.3224].

    Article  ADS  Google Scholar 

  7. G. M. Eadie and W. E. Harris, Astrophys. J. 829, 108 (2016).

    Article  ADS  Google Scholar 

  8. A. A. Chemel, E. V. Glushkova, A. K. Dambis, et al., Astrophysical Bulletin 73, 162 (2018).

    Article  ADS  Google Scholar 

  9. A. A. Chemel (private communication).

  10. D. A. Vanden Berg, Astrophys. J. Suppl. 129, 315 (2000).

    Article  Google Scholar 

  11. M. Salaris and A. Weiss, Astron. and Astrophys. 388, 492 (2002).

    Article  ADS  Google Scholar 

  12. K. A. Venn, M. Irwin, M. D. Shetrone, et al., Astron. J. 128, 1177 (2004).

    Article  ADS  Google Scholar 

  13. T. Bensby, S. Feldsing, and I. Lundstrem, Astron. and Astrophys. 410, 527 (2003).

    Article  ADS  Google Scholar 

  14. О. J. Eggen, D. Linden-Bell, and A. Sandage, Astrophys. J. 136, 748 (1962).

    Article  ADS  Google Scholar 

  15. M. G. Abadi, J. F. Navarro, and M. Steinmetz, Monthly Notices Royal Astron. Soc. 365, 747 (2006).

    Article  ADS  Google Scholar 

  16. Y.-W. Lee, H. B. Gim, and D. I. Casetti-Dinescu, Astrophys. J. 661, L49 (2007).

    Article  ADS  Google Scholar 

  17. R. G. Gratton, E. Carretta, and A. Bragaglia, Astron. Astrophys. Rev. 20, 50 (2012).

    Article  ADS  Google Scholar 

  18. T. Decressin, G. Meynet, C. Charbonnel, et al., Astron. and Astrophys. 464, 1029 (2007).

    Article  ADS  Google Scholar 

  19. P. Ventura and F. D’Antona, Astron. and Astrophys. 499, 835 (2009).

    Article  ADS  Google Scholar 

  20. S. Jang, Y.-W. Lee, S.-J. Joo and C. Na, Monthly Notices Royal Astron. Soc. 443, L15 (2014).

    Article  ADS  Google Scholar 

  21. T. V. Borkova and V. A. Marsakov, Bull. Spec. Astrophys. Obs. 54, 61 (2002).

    ADS  Google Scholar 

  22. Y.-W. Lee, P. Demarque and R. Zinn, Astrophys. J. 423, 248 (1994).

    Article  ADS  Google Scholar 

  23. V. A. Marsakov and T. V. Borkova, Astronomy Letters 32, 545 (2006).

    Article  ADS  Google Scholar 

  24. P. E. Nissen and W. J. Schuster, Astron. and Astrophys. 511, L10 (2010).

    Article  ADS  Google Scholar 

  25. V. V. Bobylev and A. T. Bajkova, Astronomy Reports 61, 551 (2017).

    Article  ADS  Google Scholar 

  26. D. A. Forbes and T. Bridges, Monthly Notices Royal Astron. Soc. 404, 1203 (2010).

    ADS  Google Scholar 

  27. A. Mucciarelli, M. Bellazzini, R. Ibata, et al., Astron. and Astrophys. 605, A46 (2017).

    Article  ADS  Google Scholar 

  28. S. L. J. Gibbons, V. Belokurov, and N. W. Evans, Monthly Notices Royal Astron. Soc. 464, 794 (2017).

    Article  ADS  Google Scholar 

  29. V. Marsakov, T. Borkova, and V. Koval’, in Proc. B. V. Kurarkin Centenary Conf. on Variable stars, the Galactic halo end Galaxy formation, Zvenigorod, Russia, 2009, Ed. by C. Sterken, N. Samus, and L. Szabodos (Univ. Press, Moscow, 2010), p. 133.

  30. T. Tshuchiya, D. Dinescu, and V. I. Korchagin, Astrophys. J. 589, L29 (2003).

    Article  ADS  Google Scholar 

  31. M. G. Abadi, M. G. Navarro, M. Steinmetzand, and V. R. Eke, Astrophys. J. 591, 499 (2003).

    Article  ADS  Google Scholar 

  32. A. Meza, J. F. Navarro, M. G. Abadi, and M. Steinmetz, Monthly Notices Royal Astron. Soc. 359, 93 (2005).

    Article  ADS  Google Scholar 

  33. T. V. Borkova and V. A. Marsakov, Astronomy Reports 49, 405 (2005).

    Article  ADS  Google Scholar 

  34. V. A. Marsakov, M. L. Gozha, and V. V. Koval, Astronomy Reports 62, 50 (2018).

    Article  ADS  Google Scholar 

  35. J. T. Mackereth, R. P. Schiavon, J. Pfeffer, et al., Monthly Notices Royal Astron. Soc. 482, 3426 (2019).

    Article  ADS  Google Scholar 

  36. V. A. Marsakov, M. L. Gozha, and V. V. Koval’, Astronomy Reports 63, 203 (2019).

    Article  ADS  Google Scholar 

  37. M.D. Shetrone, P. Côté, and W. L. W. Sargent, Astrophys. J. 548, 592 (2001).

    Article  ADS  Google Scholar 

  38. M. Shetrone, K. A. Venn, E. Tolstoy, et al., Astron. J. 125, 684 (2003).

    Article  ADS  Google Scholar 

  39. D. Geisler, V. V. Smith, G. Wallerstein, et al., Astron. J. 129, 1428 (2005).

    Article  ADS  Google Scholar 

  40. V. Belokurov, D. Erkal, N. W. Evans, et al., Monthly Notices Royal Astron. Soc. 478, 611 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Alexander Chemel for providing spatial velocity components for 115 globular clusters and the rotation curve of his model of the Galaxy.

Funding

M. V. A. and G. M. L. thank for the support of the Ministry of Education and Science of the Russian Federation (state assignment No. 3.5602.2017/BCh), and K.V. thanks for the support of the Ministry of Education and Science of the Russian Federation (state assignment No. 3.858.2017/4.6).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Marsakov, V. V. Koval’ or M. L. Gozha.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Russian Text © The Author(s), 2019, published in Astrofizicheskii Byulleten’, 2019, Vol. 74, No. 4, pp. 414–436.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marsakov, V.A., Koval’, V.V. & Gozha, M.L. Globular Clusters of the Galaxy: Chemical Composition vs Kinematics. Astrophys. Bull. 74, 403–423 (2019). https://doi.org/10.1134/S1990341319040072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341319040072

Key words

Navigation