Skip to main content
Log in

The Quartet of Eigenvectors for Quaternionic Lorentz Transformation

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In this paper the Lorentz transformation, considered as the composition of a rotation and a Lorentz boost, is decomposed into a linear combination of two orthogonal transforms. In this way a two-term expression of the Lorentz transformation by means of quaternions is proposed. An analytical solution to the problem of finding eigenvectors is given. The conditions for the existence of eigenvectors are specified. The quartet of eigenvectors, which occurs when the rotational axis is orthogonal to the velocity direction, is obtained for two cases: for the generic case of the Lorentz transformation and for the composition of the Lorentz boosts. It is shown that a quartet of eigenvectors exists for the composition of any Lorentz boosts. For the composition of boosts it is established that the half-sum (arithmetic mean) of the square roots of mutually inverse eigenvalues is found by combining half-rapidities of the original boosts according to the same cosine rule, which is used to combine the source rapidities into the resulting rapidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alam, M.S., Bauk, S.: Quaternion Lorentz transformation. Phys. Essays 24(2), 158–162 (2011). https://doi.org/10.4006/1.3556536

    Article  ADS  Google Scholar 

  2. Barrett, J.F.: Review of problems of dynamics in the hyperbolic theory of special relativity. PIRT Conference, Imperial Coll., pp. 17–30 (2002). http://www.space-lab.ru/files/pages/PIRT_VII-XII/pages/text/PIRT_VIII/Barrett.pdf

  3. Barrett, J.F.: The hyperbolic theory of special relativity. A reinterpretation of the special theory in hyperbolic space (2006). arXiv:1102.0462

  4. Barrett, J.F.: Minkovski space-time and hyperbolic geometry. MASSEE International Congress on Mathematics MICOM-2015 (2015). https://eprints.soton.ac.uk/397637/2/J_F_Barrett_MICOM_2015_2018_revision_.pdf

  5. Baumgarten, C.: The Simplest Form of the Lorentz Transformations (2017). arXiv:1801.01840v1

  6. Bliokh, K.Y.: Lorentz-boost eigenmodes. Phys. Rev. A 98(1), 012143-1–012143-9 (2018). https://doi.org/10.1103/PhysRevA.98.012143

  7. Casanova, G.: L’algèbre vectorielle. Presses de Universitaries de France, Paris (1976)

  8. Dirac, P.A.M.: Application of quaternions to the Lorentz transformations. Proc. R. Irish Acad. Sect. A Math. Phys. Sci. 50, 261–270 (1944/1945)

  9. Dray, T., Manogue, C.A.: The octonionic eigenvalue problem. Adv. Appl. Clifford Algebras 8(2), 341–364 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feynman, R.P., Leighton, R.B., Sands M.: The Feynman Lectures on Physics, Vol. I, Ch. 15: The Special Theory of Relativity. Addison-Wesley (1963)

  11. Fok, V.A.: The Theory of Space, Time and Gravitation, 2nd edn. N. Kemmer (translator), Pergamon Press–Macmillan Company (1964)

  12. Gordeiev, V.N.: Quaternions and Biquaternions with Applications in Geometry and Mechanics. Publishing House “Stal”, Kiev (2016) (Russian)

  13. Hamilton, W.R.: Lectures on Quaternions. Hodges and Smith, Dublin (1853)

  14. Jadczyk, A., Szulga, J.: Lorentz transformation from an elementary point of view (2016). arXiv:1611.06379

  15. Jaffe, A.: Lorentz Transformations, Rotations, and Boosts. Harvard (2013)

  16. Kantor, I.L., Solodovnikov, A.S.: Hypercomplex Numbers: An Elementary Introduction to Algebras. Springer, Berlin (1989)

  17. Kharinov, M.V.: Sketch on quaternionic Lorentz transformations. International Conference on Polynomial Computer Algebra (PCA’2019), St. Petersburg: Russian Academy of Sciences, St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg Electrotechnical University “LETI”, April 15–20, pp. 71–74 (2019). https://doi.org/10.13140/RG.2.2.13225.03686(presentation)

  18. Kharinov, M.V.: Product of three octonions. Adv. Appl. Clifford Algebras 29(1) (2019). https://doi.org/10.1007/s00006-018-0928-x

  19. Kharinov, M.V.: The eigenvector quartet for the composition of Lorentz boosts in the quaternionic space. In: Proc. of the 15-th Int. Conf. on Finsler Extensions of Relativity Theory-2019 (FERT-2019), Moscow, October 24–27, pp. 195–200 (2019). https://doi.org/10.13140/RG.2.2.11847.04001 (Russian, presentation)

  20. Klein, F.: Über die geometrische Grundlagen der Lorentzgrupp (eng: On the geometrical foundations of the Lorentz group). Jahresbericht der Deutschen Mathematiker-Vereinigung, pp. 281–300 (1910)

  21. Lanczos, C. (Cornel, Hungarian: Lánczos Kornél): The Variational Principles of Mechanics. New York (2010)

  22. Malykin, G.B.: Thomas precession: correct and incorrect solutions. UFN 176(8), 865–882 (2006). https://doi.org/10.3367/UFNr.0176.200608f.0865(Russian)

  23. Mocanu, C.I.: On the relativistic velocity composition paradox and the Thomas rotation. Found. Phys. Lett. 5(5), 443–456 (1992)

  24. Møller, C.: The Theory of Relativity. Oxford University Press, Oxford (1955)

  25. Okubo, S.: Triple products and Yang–Baxter equation. I. Octonionic and quaternionic triple systems. J. Math. Phys. 34(7), 3273–3291 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Salamon, D.A., Walpuski, T.: Notes on the octonions (2010). arXiv:1005.2820

  27. Silagadze, Z.K.: Multi-dimensional vector product. J. Phys. A Math. Gen. 35(23), 4949–4953 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Sönmez, N., Ungar, A.A.: The Einstein relativistic velocity model of hyperbolic geometry and its plane separation axiom. Adv. Appl. Clifford Algebras 23(1), 209–236 (2012). https://doi.org/10.1007/s00006-012-0367-z

    Article  MathSciNet  MATH  Google Scholar 

  29. Ungar, A.A.: Thomas rotation and the parametrization of the Lorentz transformation group. Found. Phys. Lett. 1(1), 57–89 (1988)

    Article  MathSciNet  Google Scholar 

  30. Ungar, A.A.: A unified approach for solving quadratic, qubic and quartic equations by radicals. Comput. Math. Appl. 19(12), 33–39 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ungar, A.A.: Einstein’s special relativity: unleashing the power of its hyperbolic geometry. Comput. Math. Appl. 49(2–3), 187–221 (2005). https://doi.org/10.1016/j.camwa.2004.10.030

    Article  MathSciNet  MATH  Google Scholar 

  32. Ungar, A.A.: Hyperbolic Geometry, vol. 259–282 (2013). https://doi.org/10.7546/giq-15-2014-259-282

  33. Zhenyu, W., Wang, T.T.: Comments on “Quaternion Lorentz transformation”. Phys. Essays 25(1), 47–48 (2012). https://doi.org/10.4006/0836-1398-25.1.47

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Kharinov.

Additional information

Communicated by Rafał Abłamowicz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharinov, M. The Quartet of Eigenvectors for Quaternionic Lorentz Transformation. Adv. Appl. Clifford Algebras 30, 25 (2020). https://doi.org/10.1007/s00006-020-1050-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-020-1050-4

Keywords

Mathematics Subject Classification

Navigation