Skip to main content
Log in

Obstruction Class for the Existence of a Conformal Spin Structure in a Strict Sense

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Let V be a pseudo-Riemannian n-dimensional manifold or, more generally, let \((\xi ,Q)\) be a real fibre bundle whose base space is a paracompact space endowed with a non-degenerate quadratic form Q, (that is, with a structure group \({\mathrm {O}}(p,q),\)\(n=p+q\).) Let \(K_{p,q}\) denote the obstruction class for the existence of a \(\mathrm {Pin}(p,q)\)-spin structure on V or over \(\xi .\) Let \(K_{\mathrm {Conf}}(p,q)\) denote the obstruction class for the existence of a conformal spin structure in a strict sense on V or over \(\xi ,\) (simply: a \(C_{n}^{s}(p,q)\)-spin structure), if \(n=2r,\) or of a conformal special spin structure, if \(n=2r+1.\) This short self-contained paper will recall the determination of the obstruction class \(K_{p,q}\) on V,  or over \(\xi ,\) for n even or odd. Then, the obstruction class \(K_{p+1,q+1}\) for the existence of a \(\mathrm {Pin}(p+1,q+1)\)-spin structure over \(\xi _{j}\), (Greub’s j-extension of \(\xi ,\) where j denotes the identity mapping from \({\mathrm {O}}(p,q)\) into \({\mathrm {O}}(p+1,q+1)\)), will be determined in order to express \(K_{\mathrm {Conf}}(p,q),\) for \(n=2r\) or \(n=2r+1,\) in terms of the Stiefel–Whitney classes \(w_{i}(p,q),\)\(i=1,2,\) of \(\xi \), decomposed as the Whitney sum \(\xi =\xi ^{+}\oplus \xi ^{-},\) where the restriction of Q to \(\xi ^{+}\) is positive definite and the restriction of Q to \(\xi ^{-}\) is negative. If \(n=2r,\) we find again results obtained in previous publications [4, 5, 7], by different methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anglès, P.: Construction de revêtements du groupe conforme d’un espace vectoriel muni d’une métrique de type \((p, q)\). Ann. de l’Inst. Henri Poincaré Sect. A XXXIII 1, 33–51 (1980)

    MATH  Google Scholar 

  2. Anglès, P.: Géométrie spinorielle conforme orthogonale triviale et groupes de spinorialité conformes. Report-HTKK-MAT-A195, Helsinki University of Technology, 1–36 (1982)

  3. Anglès, P.: Algèbres de Clifford \(C_{r,s}\) des espaces quadratiques pseudo-Euclidiens standards \(E_{r,s}\) et structures correspondantes sur les espaces de spineurs associés. Plongements naturels des quadriques projectives réelles \({\widetilde{Q}}(E_{r,s})\) attachées aux espaces \(E_{r,s}\). NATO ASI Series 183, D. Reidel Publishing Company, 79–91 (1986)

  4. Anglès, P.: Real conformal spin structures on manifolds. Stud. Sci. Math. Hungarica 23, 115–139 (1988)

    MathSciNet  MATH  Google Scholar 

  5. Anglès, P.: Conformal groups in geometry and spin structures. Progress in mathematical physics, vol. 50. Birkhäuser, Boston (2008)

    Book  MATH  Google Scholar 

  6. Anglès, P.: The structure of the Clifford algebra. Adv. Appl. Clifford Algebras 19(3–4), 585–610 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anglès, P.: A few comments on conformal spin structures and conformal \(U(1)\)-spin structures on a pseudo-Riemannian \(2r\)-dimensional manifold \(V\). Adv. Appl. Clifford Algebras 27, 165–183 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology 3(Suppl. 1), 3–38 (1964). (Pergamon Press )

    Article  MathSciNet  MATH  Google Scholar 

  9. Borel, A.: Sur l’homologie et la Cohomologie des Groupes de Lie Compacts Connexes. Oeuvres Complètes, vol. 1, pp. 273–342. Springer-Verlag, Berlin (1983)

    MATH  Google Scholar 

  10. Chevalley, C.: The Algebraic Theory of Spinors and Clifford Algebras. Springer-Verlag, Berlin (1999)

    Google Scholar 

  11. Davis, J.F., Kirk, P.: Lecture notes in algebraic topology, http://www.indiana.edu/~jfdavis/teaching/m623/book.pdf

  12. Deheuvels, R.: Groupes conformes et algèbres de Clifford. Rend. Sem. Mat. Univers. Politech. Torino 43(2), 205–226 (1985)

    MathSciNet  MATH  Google Scholar 

  13. Deligne, P.: Notes on spinors. In: Quantum Fields and Strings: A Course for Mathematicians. Vol. 1, American Mathematical Society, USA, 99–134 (1999)

  14. Dieudonné, J.: A History of Algebraic and Differential Geometry 1900–1960. Birkhäuser, Boston (1989)

    MATH  Google Scholar 

  15. Dieudonné, J.: On the Automorphisms of the Classical Groups. Mem. Am. Math. Soc. 2, 1–95 (1951)

    Google Scholar 

  16. Encyclopedic Dictionary of Mathematics. 2nd edn., The M.I.T. Press, Cambridge, Massachusetts, and London, England (1968)

  17. Greub, W., Petry, R.: On the Lifting of Structure Groups. Lecture Notes in Mathematics 676, Bonn, 217–246 (1977)

  18. Gürlebeck, K., Habetha, K., Spröessig, W.: Holomorphic Functions in the Plane and \(n\)-Dimensional Space. Birkhäuser, Boston (2008)

    Google Scholar 

  19. Haantjes, J.: Conformal representations of an \(n\)-dimensional Euclidean space with a non-definite fundamental form on itself. Nedel. Akad. Wetensch. Proc. 40, 700–705 (1937)

    MATH  Google Scholar 

  20. Haefliger, A.: Sur l’extension du groupe structural d’un espace. C.R.A.S. Paris 243, 558–560 (1956)

    MATH  Google Scholar 

  21. Hatcher, A.: Algebraic Topology,https://www.math.cornell.edu/~hatcher/AT/AT.pdf

  22. Hines, R.: The First and Second Stiefel-Whitney Classes, Orientation and Spin Structure (2017). https://math.colorado.edu/~rohi1040/expository/param_spin.pdf

  23. Hirzebruch, F.: Topological Methods in Algebraic Geometry, 3rd edn. Springer Verlag, Berlin (1966)

    Book  MATH  Google Scholar 

  24. Husemoller, D.: Fiber Bundles, 3rd edn. Springer-Verlag, Berlin (1996)

    Google Scholar 

  25. Karoubi, M.: Algèbres de Clifford et K-Théorie. Ann. scient. E. Norm. Sup. 4ème série, t 1(2), 161–270 (1968)

    MATH  Google Scholar 

  26. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I. Interscience Publishers, Geneva (1963)

    MATH  Google Scholar 

  27. Lang, S.: Algebra, 3rd edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  28. Lawson Jr., H .B., Michelson, M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)

    Google Scholar 

  29. Lichnerowicz, A.: Champs spinoriels et propagateurs en relativité générale. Bull. Soc. Math. France 92, 11–100 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lounesto, P.: Clifford Algebras and Spinors. 2nd edn., Cambridge University Press, London Mathematical Society, Lecture Notes Series 286, Cambridge (2001)

  31. Milnor, J.: Spin structure on manifolds. Enseignement Math. Genève 2ème série 9, 198–203 (1963)

    MathSciNet  MATH  Google Scholar 

  32. Prouté, A.: Topologie Algébrique, Cours et Problèmes. Université Paris Diderot (2012–2015)

  33. Rodrigues Jr., W.A.: Capelas de Oliveira, E.: The Many Faces of Maxwell, Dirac and Einstein Equations, A Clifford Bundle Approach. Springer, New York (2007)

    Book  Google Scholar 

  34. Seminaire, H.: Cartan, 1948/1949, Topologie algébrique, 1948/1949 Espaces fibrés et homotopie 25, 1950/1951, Cohomologie des groupes, suite spectrale, faisceaux. W. A. Benjamin Inc, New York Amsterdam (1967)

  35. Steenrod, N.: Topology of Fibre Bundles. Princeton University Press, Princeton (1951)

    Book  MATH  Google Scholar 

  36. Steenrod, N.E.: Cohomology Operations. Lectures by N.E. Steenrod written and revised by D. B. A. Epstein. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  37. Trautman, A.: Double covers of pseudo-orthogonal groups. In: Brackx, F., Chisholm, J.S.R. (eds.) Clifford Analysis and Its Applications, pp. 377–388. Kluwer Academic Press, Berlin (2001)

    Chapter  Google Scholar 

Download references

Acknowledgements

The author wants to thank Max Karoubi, Université Paris VI, for his kind interest and support and José Bertin, Institut Fourier, Université de Grenoble, for a critical reading of the paper. He wants also to express all his grateful thanks to Rafał Abłamowicz for his judicious remarks on the preliminary draft of the paper and his generous help in the preparation of the files. Thanks also are due to an anonymous reviewer for his useful and constructive comments and to Jacques Helmstetter, Institut Fourier, Université de Grenoble, for his thorough inspection of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Anglès.

Additional information

Communicated by Rafał Abłamowicz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anglès, P. Obstruction Class for the Existence of a Conformal Spin Structure in a Strict Sense. Adv. Appl. Clifford Algebras 30, 18 (2020). https://doi.org/10.1007/s00006-020-1044-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-020-1044-2

Keywords

Mathematics Subject Classification

Navigation