Skip to main content
Log in

A Geometric Algebra Based Higher Dimensional Approximation Method for Statics and Kinematics of Robotic Manipulators

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

A Correction to this article was published on 07 August 2020

This article has been updated

Abstract

Evaluation of a robotic (serial or parallel) manipulator’s static and kinematics performance requires the solution of closed and complicated non-closed form systems of equations for both the forward and inverse problem types. In this work, a robotic system or manipulator is represented as a network whose motion generating kinematic pairs are represented as the network’s inter-connected nodes. Within this network theoretic context, we develop a formulation employing higher dimensional multivectors defined in Clifford Algebra that approximates the computational outcomes of such complicated systems of equations, for both inverse and forward problem types. The statics and kinematics performance of these mechanical networks (serial and parallel robots) are rapidly evaluated without the need to solve their respective traditional systems of equations using what we call ‘screw hypervolumes’, which capture the algebro-geometric structures generated by a robot’s physical design parameters and end-effector position in terms of kinematics and statics. These dimensionless hypervolume functions enable the specialist to produce a very computationally efficient function/index that approximates the kinematic and static output spaces of robots. We find that this formulation inadvertently presents a curious mathematical analogue to these systems of equations. A 6R serial robot, the Delta robot and the 3-RRR manipulator are analysed using the hypervolume methods for the case studies. This approach can be adapted and applied to other multi-agent physical systems displaying non-commutative interactions as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Change history

  • 07 August 2020

    Typographic error in Eq. (41c): the subscript.

References

  1. Altmann, S.: Rotations, Quaternions, and Double Groups. Clarendon Press, Oxford (1986)

    MATH  Google Scholar 

  2. Angeles, J.: Rational Kinematics. Springer, New York (1988)

    Book  Google Scholar 

  3. Balli, S., Chand, S.: Transmission angle in mechanisms. Mech. Mach. Theory 37(2), 175–195 (2002)

    Article  Google Scholar 

  4. Bayro-Corrochano, E.: Geometric Computing: for Wavelet Transforms, Robot Vision, Learning, Control and Action. Springer Publishing Company Inc., Berlin (2010)

    Book  Google Scholar 

  5. Bayro-Corrochano, E.: Application of Geometric Algebra. Robot Moedelling and Control, vol. II. Springer, Berlin (2019)

    Google Scholar 

  6. Bayro-Corrochano, E., Falcón, L.E.: Geometric algebra of points, lines, planes and spheres for computer vision and robotics. Robotica 23(11), 755–770 (2005)

    Article  Google Scholar 

  7. Bayro-Corrochano, E., Zamora-Esquivel, J.: Differential and inverse kinematics of robot devices using conformal geometric algebra. Robotica 25(1), 43–61 (2007)

    Article  Google Scholar 

  8. Bayro-Corrochano, E., Daniilidis, K., Sommer, G.: Motor algebra for 3D kinematics: the case of the hand–eye calibration. J. Math. Imaging Vis. 13, 79–100 (2000)

    Article  MathSciNet  Google Scholar 

  9. Bayro-Corrochano, E., Reyes-Lozano, L., Zamora-Esquivel, J.: Conformal geometric algebra for robotic vision. J. Math. Imaging Vis. 24(1), 55–81 (2006)

    Article  MathSciNet  Google Scholar 

  10. Ben-Horin, P., Shoham, M.: Singularity analysis of a class of parallel robots based on Grassmann–Cayley algebra. Mech. Mach. Theory 41(13), 958–970 (2006)

    Article  MathSciNet  Google Scholar 

  11. Boyer, D.M., Lipman, Y., Clair, E.S., Puente, J., Patel, B.A., Funkhouser, T., Jernvall, J., Daubechies, I.: Algorithms to automatically quantify the geometric similarity of anatomical surfaces. Proc. Natl. Acad. Sci. 108(45), 18221–18226 (2011)

    Article  ADS  Google Scholar 

  12. Chang, W., Lin, C., Lee, J.: Force transmissibility performance of parallel manipulators. J. Robot. Syst. 20(16), 659–670 (2003)

    Article  Google Scholar 

  13. Das, B.S., Haws, N.W., Rao, P.S.C.: Defining geometric similarity in soils. Vadose Zone J. 4(2), 264–270 (2005)

    Article  Google Scholar 

  14. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  15. Duffy, J.: Statics and Kinematics with Applications to Robotics. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  16. Gallardo-Alvarado, J., Rico-Martinez, J.: Jerk influence coefficients, via screw theory, of closed chains. Meccanica 36(2), 213–228 (2001)

    Article  Google Scholar 

  17. Gallardo, J., Rico, J.M., Frisoli, A., Checcacci, D., Bergamasco, M.: Dynamics of parallel manipulators by means of screw theory. Mech. Mach. Theory 38(11), 1113–1131 (2003)

    Article  MathSciNet  Google Scholar 

  18. Gallardo-Alvarado, J., Aguilar-Nájera, C., Casique-Rosas, L., Rico-Martínez, J., Islam, M.: Kinematics and dynamics of 2(3-RPS) manipulators by means of screw theory and the principle of virtual work. Mech. Mach. Theory 43(15), 1281–1294 (2008)

    Article  Google Scholar 

  19. González-Jiménez, L., Carbajal-Espinosa, O., Loukianov, A., Bayro-Corrochano, E.: Robust pose control of robot manipulators using conformal geometric algebra. Adv. Appl. Clifford Algebras 24(2), 533–552 (2014)

    Article  MathSciNet  Google Scholar 

  20. Gogu, G.: Constraint singularities and the structural parameters of parallel robots. In: Advances in Robot Kinematics: Analysis and Design, pp. 21–28. Springer, Dordrecht (2008)

    Chapter  Google Scholar 

  21. Gosselin, C.M., Guillot, M.: The synthesis of manipulators with prescribed workspace. J. Mech. Design 113(4), 451–455 (1991)

    Article  Google Scholar 

  22. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. D. Reidel, Dordrecht (1984)

    Book  Google Scholar 

  23. Kenwright, B.: Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond. Princeton, Citeseer (2012)

    Google Scholar 

  24. Kong, X., Gosselin, C.M.: Kinematics and singularity analysis of a novel type of 3-CRR 3-DOF translational parallel manipulator. Int. J. Robot. Res. 21(9), 791–798 (2002)

    Article  Google Scholar 

  25. Li, D., Yu, Z., Luo, W., Hu, Y., Che, X., Yuan, L.: Optimal route searching with multiple dynamical constraints—a geometric algebra approach. ISPRS Int. J. Geoinf. 7(10), 172 (2018)

    Article  Google Scholar 

  26. McCarthy, J., Ahlers, S.: Dimensional synthesis of robots using a double quaternion formulation of the workspace. In: Robotics Research-international Symposium, vol. 9 (2000)

    Chapter  Google Scholar 

  27. Newman, M.: Networks. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  28. Schott, R., Staples, G.S.: Generalized zeon algebras: theory and application to multi-constrained path problems. Adv. Appl. Clifford Algebras 27(1), 45–57 (2017)

    Article  MathSciNet  Google Scholar 

  29. Selig, J.M., Bayro-Corrochano, E.: Rigid body dynamics using Clifford algebra. Adv. Appl. Clifford Algebras 20(1), 141–154 (2010)

    Article  MathSciNet  Google Scholar 

  30. Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer, Berlin (2008)

    Book  Google Scholar 

  31. Smart, J.R.: Modern Geometries. Brooks/Cole Publishing Company, Pacific Grove (1998)

    MATH  Google Scholar 

  32. Tanev, T.: Geometric algebra approach to singularity of parallel manipulators with limited mobility. In: Advances in Robot Kinematics: Analysis and Design, pp. 39–48 (2008)

    Chapter  Google Scholar 

  33. Tanev, T.: Singularity analysis of a 4-DOF parallel manipulator using geometric algebra. In: Advances in Robot Kinematics, pp. 275–284 (2006)

  34. Thomas, F.: Approaching dual quaternions from matrix algebra. IEEE Trans. Robot. 30(10), 1037–1048 (2014)

    Article  Google Scholar 

  35. Tsai, L.: Robot Analysis: the Mechanics of Serial and Parallel Manipulators. Wiley, New York (1999)

    Google Scholar 

  36. Vucina, D., Freudenstein, F.: An application of graph theory and nonlinear programming to the kinematic synthesis of mechanisms. Mech. Mach. Theory 26(6), 553–563 (1991)

    Article  Google Scholar 

  37. Yu, Z., Li, D., Zhu, S., Luo, W., Hu, Y., Yuan, L.: Multisource multisink optimal evacuation routing with dynamic network changes: a geometric algebra approach. Math. Methods Appl. Sci. 41(16), 4179–4194 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  38. Zamora-Esquivel, J., Bayro-Corrochano, E.: Robot perception and handling actions using the conformal geometric algebra framework. Adv. Appl. Clifford Algebras 20(3–4), 959–990 (2010)

    Article  MathSciNet  Google Scholar 

  39. Zhao, J., Li, B., Yang, X., Yu, H.: Geometrical method to determine the reciprocal screws and applications to parallel manipulators. Robotica 27(06), 929 (2009)

    Article  Google Scholar 

  40. Zhu, S., Yuan, S., Li, D., Luo, W., Yuan, L., Yu, Z.: Mvtree for hierarchical network representation based on geometric algebra subspace. Adv. Appl. Clifford Algebras 28(2), 39 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors graciously acknowledge Debaditya Biswas for his assistance in the preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudharsan Thiruvengadam.

Additional information

Communicated by Hongbo Li

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiruvengadam, S., Miller, K. A Geometric Algebra Based Higher Dimensional Approximation Method for Statics and Kinematics of Robotic Manipulators. Adv. Appl. Clifford Algebras 30, 17 (2020). https://doi.org/10.1007/s00006-019-1039-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-019-1039-z

Keywords

Navigation