Skip to main content
Log in

Influence of the Contribution of Body Waves to the Result of the Microseismic Sounding Method

  • ACOUSTICS OF STRUCTURALLY INHOMOGENEOUS SOLID MEDIA. GEOLOGICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The article presents a numerical study of the formation of the amplitude response in a free surface from simultaneous scattering of Rayleigh waves and vertically incident longitudinal waves by an embedded contrast velocity inclusion. It has been established that the significant presence of body waves in a microseismic field does not fundamentally change the result of the microseismic sounding method, which is based on the notion of the overwhelming contribution of the fundamental mode of a Rayleigh wave to the formation of the Earth’s microseismic field. Cases are considered when a microseismic signal at the same frequency is modeled only by the fundamental mode of the Rayleigh wave, only by a vertically incident longitudinal wave, and by both types of waves simultaneously. Variants of inhomogeneities with different dimensions and velocity properties are considered. The analysis was performed in a (λ, r)-space, in analogy with reconstruction of the structure of the geological setting in the microseismic sounding method, where λ is the wavelength of the fundamental Rayleigh mode and r is the coordinate on the Earth’s surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. V. Gorbatikov and A. A. Tsukanov, Phys. Solid Earth 47 (4), 354 (2011).

    Article  Google Scholar 

  2. A. A. Tsukanov and A. V. Gorbatikov, Izv., Phys. Solid Earth 51 (4), 548 (2015).

    Article  Google Scholar 

  3. A. V. Gorbatikov, M. Yu. Stepanova, and G. E. Korablev, Phys. Solid Earth 44 (7), 577 (2008).

    Article  Google Scholar 

  4. Y. Nakamura, Q. Rep. Railw. Tech. Res. Inst. 30 (1), 25 (1989).

    Google Scholar 

  5. L. P. Vinnik, A. S. Deniskov, and T. D. Kon’kov, Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 8, 21 (1967).

    Google Scholar 

  6. L. P. Vinnik, Structure of Microseisms and Some Problems on Grouping Procedure for Seismology (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  7. J. F. Claerbout, Geophysics 29 (2), 197 (1964).

    Article  ADS  Google Scholar 

  8. P. Gerstoft, M. C. Fehler, and K. G. Sabra, Geophys. Res. Lett. 33, L17308 (2006). https://doi.org/10.1029/2006GL027270

    Article  ADS  Google Scholar 

  9. P. Gerstoft, P. M. Shearer, N. Harmon, and J. Zhang, Geophys. Res. Lett. 35, L23306 (2008). https://doi.org/10.1029/2008GL036111

    Article  ADS  Google Scholar 

  10. K. D. Koper and B. De Foy, Bull. Seismol. Soc. Am. 98 (6), 3033 (2008).

    Article  Google Scholar 

  11. M. Landes, F. Hubans, N. M. Shapiro, A. Paul, and M. Campillo, in Proc. AGU Fall Meeting (San Francisco, CA, 2008), Vol. 1, p. 1893.

  12. T. B. Yanovskaya, Phys. Solid Earth 53 (6), 819 (2017).

    Article  Google Scholar 

  13. W. Menke, Geophysical Data Analysis: Discrete Inverse Theory (Academic Press, 2012), Vol. 45.

    MATH  Google Scholar 

  14. R. A. Wiggins, Rev. Geophys. 10 (1), 251 (1972).

    Article  ADS  Google Scholar 

  15. K. Aki and P. G. Richards, Quantitative Seismology, Theory and Methods (W. H. Freeman, San Francisco, CA, 1980; Mir, Moscow, 1983), Vol 1.

  16. A. I. Lur’e, Theory of Elasticity (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  17. I. A. Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applications (Plenum Press, New York, 1967).

    Book  Google Scholar 

  18. P. G. Malischewsky, Wave Motion 31 (1), 93 (2000).

    Article  MathSciNet  Google Scholar 

  19. Kalitkin, N.N., Numerical Methods (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  20. A. A. Tsukanov, Candidate’s Dissertation in Mathematics and Physics (Moscow State Univ., Moscow, 2010).

  21. A. A. Tsukanov and A. V. Gorbatikov, in Proc. Geomodel 2016–18th Science and Applied Research Conference on Oil and Gas Geological Exploration and Development (Gelendzhik, 2016). http://www.earthdoc.org/publication/publicationdetails/?publication=86769. https://doi.org/10.3997/2214-4609.201602198

  22. A. A. Tsukanov and A. V. Gorbatikov, Acoust. Phys. 64 (1), 70 (2018).

    Article  ADS  Google Scholar 

  23. V. Sadovnichy, A. Tikhonravov, Vl. Voevodin, and V. Opanasenko, in Contemporary High-Performance Computing: From Petascale toward Exascale. Chapman and Hall/CRC Computational Science (CRC Press, Boca Raton, FL, 2013), p. 283.

  24. A. V. Adinets, P. A. Bryzgalov, V. V. Voevodin, S. A. E. Zhumatii, D. A. Nikitenko, and K. S. Stefanov, Numer. Methods Program. Adv. Comput. 13 (4), 160 (2012).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out with the equipment of the Center for Collective Use of High-Performance Computing Resources of Moscow State University [23, 24].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Tsukanov or A. V. Gorbatikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukanov, A.A., Gorbatikov, A.V. Influence of the Contribution of Body Waves to the Result of the Microseismic Sounding Method. Acoust. Phys. 66, 191–197 (2020). https://doi.org/10.1134/S106377102001011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377102001011X

Keywords:

Navigation