Skip to main content
Log in

Caustic and Weakly Diverging Beams in Horizontally Inhomogeneous Oceanic Waveguides

  • OCEAN ACOUSTICS. HYDROACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Using approximate analytical calculations based on the WKB and adiabatic approximations for the mode representation of the field, as well as numerical simulation based on the theory of adiabatic modes, geometric acoustic approximation, and the parabolic equation method, the patterns of the formation and propagation of caustic and weakly diverging acoustic beams in a horizontally inhomogeneous refractive oceanic waveguide are studied. The horizontal distance regions are determined at which the dependences of the acoustic field intensity on the horizontal distance typical of caustic and weakly diverging beams are retained. The study considers the processes involved in reformation of caustic and weakly diverging beams in an oceanic waveguide with increasing water layer depth and constant sound speed profile, which near the source characterized an underwater sound channel open toward the bottom. The conditions are formulated for an effectively matched transition of shallow-water waveguide modes refracted in the thermocline and interacting with the bottom to purely refracted modes of the underwater sound channel in a relatively deep water part of the oceanic waveguide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Yu. V. Petukhov and V. G. Burdukovskaya, Acoust. Phys. 61 (4), 446 (2015).

    Article  ADS  Google Scholar 

  2. Yu. V. Petukhov, Acoust. Phys. 57 (3), 401 (2011).

    Article  ADS  Google Scholar 

  3. Yu. V. Petukhov, D. I. Abrosimov, and E. L. Borodina, Acoust. Phys. 52 (3), 307 (2006).

    Article  ADS  Google Scholar 

  4. D. I. Abrosimov and Yu. V. Petukhov, Acoust. Phys. 43 (4), 373 (1997).

    ADS  Google Scholar 

  5. Yu. V. Petukhov and V. G. Burdukovskaya, Acoust. Phys. 64 (5), 572 (2018).

    Article  ADS  Google Scholar 

  6. Yu. V. Petukhov, V. G. Burdukovskaya, and E. L. Borodina, Acoust. Phys. 63 (1), 63 (2017).

    Article  ADS  Google Scholar 

  7. I. B. Burlakova, V. N. Golubev, Yu. V. Petukhov, and M. M. Slavinskii, Akust. Zh. 36 (2), 362 (1990).

    Google Scholar 

  8. L. M. Brekhovskikh and Yu. P. Lysanov, Theoretical Fundamentals of Ocean Acoustics (Nauka, Moscow, 2007) [in Russian].

    MATH  Google Scholar 

  9. L. M. Brekhovskikh, V. V. Goncharov, S. A. Dremuchev, V. M. Kurtepov, V. G. Selivanov, and Yu. A. Chepurin, Akust. Zh. 36 (5), 824 (1990).

    Google Scholar 

  10. V. V. Goncharov and V. M. Kurtepov, Akust. Zh. 40 (5), 773 (1994).

    Google Scholar 

  11. L. M. Brekhovskikh, V. V. Goncharov, and V. M. Kurtepov, Izv. Akad. Nauk, Fiz. Atmos. Okeana 31 (3), 460 (1995).

    Google Scholar 

  12. Yu. V. Petukhov, Acoust. Phys. 43 (2), 196 (1997).

    ADS  Google Scholar 

  13. Yu. V. Petukhov, Akust. Zh. 40 (1), 111 (1994).

    Google Scholar 

  14. Yu. V. Petukhov, Akust. Zh. 41 (5), 807 (1995).

    Google Scholar 

  15. I. P. Smirnov and V. G. Burdukovskaya, Preprint No. 792, IPF RAN (Federal Research Center, The Institute of Applied Physics Russ. Acad. Sci., Nizhny Novgorod, 2010).

  16. K. B. Smith, J. Comput. Acoust. 9 (1), 243 (2001).

    Article  Google Scholar 

  17. W. M. Carey, J. Acoust. Soc. Am. 79 (1), 49 (1986).

    Article  ADS  Google Scholar 

  18. S. E. Dosso and N. R. Chapman, J. Acoust. Soc. Am. 81 (2), 258 (1987).

    Article  ADS  Google Scholar 

  19. R. A. Koch, S. R. Rutherford, and S. G. Payne, J. Acoust. Soc. Am. 74 (1), 210 (1983).

    Article  ADS  Google Scholar 

  20. F. D. Tappert, J. L. Spiesberger, and M. A. Wolfson, J. Acoust. Soc. Am. 111 (2), 757 (2002).

    Article  ADS  Google Scholar 

  21. V. V. Bezotvetnykh, A. V. Burenin, Yu. N. Morgunov, and Yu. A. Polovinka, Acoust. Phys. 55 (3), 376 (2009).

    Article  ADS  Google Scholar 

  22. A. N. Rutenko, S. B. Kozitskii, and D. S. Manul’chev, Acoust. Phys. 61 (1), 72 (2015).

    Article  ADS  Google Scholar 

  23. Yu. V. Petukhov and A. A. Khil’ko, Acoust. Phys. 54 (5), 689 (2008).

    Article  ADS  Google Scholar 

  24. Yu. V. Petukhov and A. A. Khil’ko, Acoust. Phys. 54 (6), 854 (2008).

    Article  ADS  Google Scholar 

  25. Yu. V. Petukhov, Acoust. Phys. 57 (4), 518 (2011).

    Article  ADS  Google Scholar 

  26. J. L. Spiesberger and F. D. Tappert, J. Acoust. Soc. Am. 99 (1), 173 (1996).

    Article  ADS  Google Scholar 

  27. D. R. Palmer, L. M. Lawson, D. A. Seem, and Y.‑H. Daneshzadeh, J. Geophys. Res. 90 (C3), 4977 (1985).

    Article  ADS  Google Scholar 

  28. L. Nghiem-Phu and H. A. DeFerrari, J. Acoust. Soc. Am. 81 (5), 1385 (1987).

    Article  ADS  Google Scholar 

  29. Yu. N. Morgunov, A. A. Golov, A. V. Burenin, and P. S. Petrov, Acoust. Phys. 65 (5), 537 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

The study was carried out as part of the state task of IAP RAS (topic no. 0035-2019-0009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. V. Petukhov, V. G. Burdukovskaya or E. L. Borodina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petukhov, Y.V., Burdukovskaya, V.G. & Borodina, E.L. Caustic and Weakly Diverging Beams in Horizontally Inhomogeneous Oceanic Waveguides. Acoust. Phys. 66, 162–177 (2020). https://doi.org/10.1134/S1063771020020062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771020020062

Keywords:

Navigation