Skip to main content
Log in

Features of Normal Higher-Order Acoustic Wave Generation in Thin Piezoelectric Plates

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The article studies the spectrum of acoustic oscillations generated by interdigital transducers in a plate made from a LiNbO3 piezocrystal with a thickness on the order of the acoustic wavelength. It is shown that, along with zeroth and higher-order modes, this spectrum also contains odd harmonics of the same modes. Unlike surface waves without dispersion, the harmonic frequencies of normal waves are not exact multiples of their fundamental frequency due to velocity dispersion, and the harmonic amplitudes can differ from the wave amplitudes at fundamental frequencies due to the dispersion of the electromechanical coupling coefficient. The temperature sensitivities of modes and harmonics differ from each other and vary with the fluid loading of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. V. Zaitsev and I. E. Kuznetsova, Acoustical Waves in Thin Piezoelectric Plates (Radiotekhnika, Moscow, 2018) [in Russian].

    Google Scholar 

  2. I. V. Anisimkin, Acoust. Phys. 50, 370 (2004).

    Article  ADS  Google Scholar 

  3. B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol. 2.

    Google Scholar 

  4. V. I. Anisimkin, I. I. Pyataikin, and N. V. Voronova, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 59, 2363 (2012).

  5. V. I. Anisimkin, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 59, 2363 (2012).

  6. B. D. Zaitsev, I. E. Kuznetsova, and S. G. Joshi, J. Appl. Phys. 90, 3648 (2001).

    Article  ADS  Google Scholar 

  7. I. E. Kuznetsova, B. D. Zaitsev, A. A. Teplykh, and I. A. Borodina, Acoust. Phys. 53, 64 (2007).

    Article  ADS  Google Scholar 

  8. I. E. Kuznetsova, B. D. Zaitsev, I. A. Borodina, A. A. Teplykh, V. V. Shurygin, and S. G. Joshi, Ultrasonics 42 (1–9), 179 (2004).

    Article  Google Scholar 

  9. W. Soluch and M. Lysakowska, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 58, 2239 (2011).

    Article  Google Scholar 

  10. V. I. Anisimkin, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 61 (1), 120 (2014).

    Article  Google Scholar 

  11. F. Di Pietrantonio, M. Benetti, D. Cannata, R. Beccherelli, and E. Verona, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 57, 1175 (2010).

    Article  Google Scholar 

  12. C. Caliendo and F. Lo Castro, Crystals 4, 228 (2014).

    Article  Google Scholar 

  13. Z. Chen, L. Fan, S. Zhang, and H. Zhang, J. Appl. Phys. 115 (2014). https://doi.org/10.1063/1.4880335

    Article  ADS  Google Scholar 

  14. R. Tao, W. B. Wang, J. T. Luo, S. A. Hasan, H. Torun, P. Canyelles-Pericas, J. Zhou, W. P. Xuan, M. D. Cooke, D. Gibson, Q. Wu, W. P. Ng, J. K. Luo, and Y. Q. Fu, Surf. Coat. Technol. 357, 587 (2019).

    Article  Google Scholar 

  15. Y.-F. Wang, T.-T. Wang, J.-P. Liu, Y.-S. Wang, and V. Laude, Compos. Struct. 206, 588 (2018).

    Article  Google Scholar 

  16. I. E. Kuznetsova, B. D. Zaitsev, and S. G. Joshi, in Proc. IEEE Int. Ultrasonics Symposium, Atlanta, GA, October 7–10, 2001, Vol. 1, p. 157.

  17. S. I. Burkov, O. P. Zolotova, B. P. Sorokin, and P. P. Turchin, Acoust. Phys. 58, 650 (2012).

    Article  ADS  Google Scholar 

  18. B. D. Zaitsev, I. E. Kuznetsova, and S. G. Joshi, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 53, 2113 (2006).

    Article  Google Scholar 

  19. E. Dieulesaint et D. Royer, Ondes élastiques dans les solides: application au traitement du signal (Masson, Paris, 1974; Nauka, Moscow, 1982).

  20. B. D. Zaitsev, I. E. Kuznetsova, and S. G. Joshi, Ultrasonics 40 (1–8), 943 (2002).

    Article  Google Scholar 

  21. M. Veidta, T. Liu, and S. Kitipornchai, NDT&E Int. 35, 437 (2002).

    Article  Google Scholar 

  22. T. Stepinski, M. Manka, and A. Martowicz, NDT&E Int. 86, 199 (2017).

    Article  Google Scholar 

  23. V. Samaitis and L. Mazeika, Sensors 17, 1825 (2017).

    Article  Google Scholar 

  24. B. D. Zaitsev, I. E. Kuznetsova, I. A. Nedospasov, A. V. Smirnov, and A. P. Semyonov, J. Sound Vib. 442, 155 (2019).

  25. Lithium niobate. http://www.bostonpiezooptics.com/ lithium-niobate.

  26. V. I. Anisimkin, N. V. Voronova, and Yu. V. Puchkov, Ultrasonics 61, 46 (2015).

    Article  Google Scholar 

Download references

Funding

The study was carried financed within the framework a state task and partially by the Russian Foundation for Basic Research (project no. 18-07-00074-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Anisimkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimkin, V.I., Voronova, N.V. Features of Normal Higher-Order Acoustic Wave Generation in Thin Piezoelectric Plates. Acoust. Phys. 66, 1–4 (2020). https://doi.org/10.1134/S1063771020010017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771020010017

Keywords:

Navigation